Carboxylate anions of various chain lengths are important molecules for many applications such as CO2 reduction, membrane-based bioreactors, etc. Also, carboxylate anions are ubiquitous in biological molecules such as amino acids, fatty acids, etc. Therefore, understanding the transport behavior of carboxylates of different chain lengths in polymer materials is important both as a fundamental phenomenon but also for designing materials for applications. Here, we characterized transport behavior by measuring the permeability (P), and total partition coefficient (K) for a series of polymer membranes for four model carboxylate salts—sodium salts of formate (NaOFm), acetate (NaOAc), propionate (NaOPr), and butanoate (NaOBu)—at varied upstream salt concentrations (0.1–1 M) or a series of polyethylene glycol diacrylate (PEGDA)-based membranes with 1) varying pre-polymerization water content; 2) varying uncharged side chain comonomer (polyethylene glycol methacrylate, PEGMA), and 3) varying charged comonomer)2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS). Also, diffusivity values of the four salts through the membranes have been calculated based on the solution diffusion model equation (Pdouble bondK × D), experimentally obtained permeability, and total partition coefficients. For a majority of these membranes, NaOFm's permeability is much higher than the other three carboxylate salts (NaOAc, NaOPr, and NaOBu) seemingly due to the lower chain length and thereby smaller hydrated diameter. In terms of total partition coefficient, a size-based trend is not observed. For example, NaOBu's total partition coefficient (K) is generally the largest among the four, and at higher upstream salt concentrations (1 M), the values of the total partition coefficients of the four salts converge. From this we conclude that the carboxylate salt transport through these PEGDA-based non-porous dense membranes to be primarily driven by kinetics and not sorption.
more »
« less
Controlling Fractional Free Volume, Transport, and Co-Transport of Alcohols and Carboxylate Salts in PEGDA Membranes
Understanding multi-component transport through polymer membranes is critical for separation applications such as water purification, energy devices, etc. Specifically for CO2 reduction cells, where the CO2 reduction products (alcohols and carboxylate salts), crossover of these species is undesirable and improving the design of ion exchange membranes to prevent this behavior is needed. Previously, it was observed that acetate transport increased in copermeation with alcohols for cation exchange membranes consisting of poly(ethylene glycol) diacrylate (PEGDA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and that the inclusion of poly(ethylene glycol) methacrylate (PEGMA) (n = 5, n represents the number of ethylene oxide repeat units) could suppress this behavior. Here, we further investigate the role of PEGMA in modulating fractional free volume and transport behavior of alcohols and carboxylates. PEGDA-PEGMA membranes of varied membranes are fabricated with both varied pre −polymerization water content at constant PEGMA (n = 9) content and varied PEGMA content at two pre −polymerization water contents (20 and 60 wt.% water). Permeability to sodium acetate also decreases in these charge-neutral PEGDA-PEGMA membranes compared to PEGMA-free films. Therefore, incorporation of comonomers such as PEGMA with long side chains may provide a useful membrane chemistry structural motif for preventing undesirable carboxylate crossover in polymer membranes.
more »
« less
- Award ID(s):
- 1936146
- PAR ID:
- 10412458
- Date Published:
- Journal Name:
- Membranes
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2077-0375
- Page Range / eLocation ID:
- 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding multi‐component transport behavior through hydrated dense membranes is of interest for numerous applications. For the particular case of photoelectrochemical CO2reduction cells (PEC‐CRC), it is important to understand the multi‐component transport behavior of CO2electrochemical reduction products including mobile carboxylates (formate and acetate) and alcohols (methanol and ethanol) in the ion exchange membranes as one role of the membrane in these devices is to minimize the permeation of these CO2reduction products to the anolyte as they often oxidize back to CO2. Cation exchange membranes (CEM) are promising candidates for such devices as they act to minimize the permeation of mobile anions, such as carboxylates. However, the design of new CEMs is necessary as the permeation of carboxylates often increases in co‐permeation with alcohols. Here, we investigate the transport behavior of carboxylates and alcohols in two types of CEMs (1) a crosslinked CEM was prepared by free‐radical copolymerization of a sulfonated monomer (AMPS) with a crosslinker (PEGDA), and (2) Nafion® 117. We observe an increase in both PEGDA‐AMPS and Nafion® 117 diffusivities to carboxylates in co‐diffusion with alcohols. We attribute this behavior to charge screening by co‐diffusing alcohol that reduces the electrostatic repulsion between bound sulfonates and mobile carboxylates.more » « less
-
The influence of the amine structure (secondary, tertiary, pyridinic) in amine-functionalized polymeric membranes on the mechanism of CO2 transport across the membrane is investigated in this work using operando surface enhanced Raman spectroscopy (SERS) and in-situ transmission FTIR spectroscopy. Specifically, the mechanism of CO2 transport across poly-N-methyl-N-vinylamine (PMVAm), poly-N, N-dimethyl-N-vinylamine (PDVAm), and poly(4-vinylpyridine) (P4VP) membranes was investigated by measuring CO2 permeances/selectivities of the membranes and simultaneously detecting CO2 transport intermediates (e.g., carbamate, bicarbonate) formed in the membrane under operating conditions using SERS and FTIR spectroscopy. While permeation measurements suggest that CO2 moves across all membranes via a facilitated transport mechanism, operando SERS and in-situ FTIR results suggest that the molecular-level details of the facilitated transport process are highly sensitive to the structure of the amine functional group. For membranes with secondary (PMVAm) and tertiary (PDVAm) amines, CO2 moves across the membrane as a mixture of both carbamate and bicarbonate species. For P4VP, which has pyridinic amine groups, no CO2-derived intermediates were detected suggesting a new facilitated transport mechanism involving weak interactions between CO2 and the pyridinic nitrogen group without transformation of CO2 into carbamate, bicarbonate, or other intermediate species. Such a facilitated transport mechanism has not been reported in the literature to our knowledge.more » « less
-
Abstract Protein‐polymer bioconjugates present a way to make enzymes more efficient and robust for industrial and medicinal applications. While much work has focused on mono‐functional conjugates, that is, conjugates with one type of polymer attached such as poly(ethylene glycol) or poly(N‐isopropylacrylamide), there is a practical interest in gaining additional functionality by synthesizing well‐defined bifunctional conjugates in a hetero‐arm star copolymer architecture with protein as the core. Using ubiquitin as a model protein, a synthetic scheme is developed to attach two different polymers (oligo(ethylene oxide) methacrylate and N,N‐dimethylacrylamide) directly to the protein surface, using orthogonal conjugation chemistries and grafting‐from by photochemical living radical polymerization techniques. The additional complexity arising from attempts to selectively modify multiple sites led to decreased polymerization performance and indicates that initiators for continuous activator regeneration atom transfer radical polymerization and reversible addition‐fragmentation chain transfer polymerization are not well‐suited to bifunctional bioconjugates applications under the studied conditions. Nonetheless, the polymerization conditions preserve the native fold of the ubiquitin and enable production of a hetero‐arm star protein‐polymer bioconjugate.more » « less
-
Abstract Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.more » « less
An official website of the United States government

