- Award ID(s):
- 1841558
- PAR ID:
- 10192244
- Date Published:
- Journal Name:
- 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The CO Mapping Array Project (COMAP) is a carbon monoxide (CO) line intensity mapping experiment using a 19-feed 26–34 GHz focal plane spectrometer array on a 10.4 m dish at the Owens Valley Radio Observatory. We are developing a water vapor radiometer (WVR) that continuously measures the temporal variability of the atmosphere’s water vapor content along the telescope’s line of sight to better calibrate the COMAP science data. The WVR is designed to monitor the rotational transition line of water vapor around 22.2 GHz, with a spectral measurement between 18 and 26 GHz and a measurement of continuum at 28–30 GHz. Here we describe the COMAP WVR instrument system.more » « less
-
Natural and anthropogenic activities result in the production of polycyclic aromatic hydrocarbons (PAHs), persistent pollutants that negatively impact the environment and human health. Rapid and reliable methods for the detection and discrimination of these compounds remains a technological challenge owing to their relatively featureless properties, structural similarities, and existence as complex mixtures. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer (CP) array-based sensing, offers a straightforward approach for the quantitative and qualitative profiling of PAHs. The sensor array was constructed from six fluorescent fluorene-based copolymers, which incorporate side chains with peripheral 2-phenylbenzimidazole substituents that provide spectral overlap with PAHs and give rise to a pronounced IFE. Subtle structural differences in copolymer structure result in distinct spectral signatures, which provide a unique “chemical fingerprint” for each PAH. The discriminatory power of the array was evaluated using linear discriminant analysis (LDA) and principal component analysis (PCA) in order to discriminate between 16 PAH compounds identified as priority pollutants by the US Environmental Protection Agency (EPA). This array is the first multivariate system reliant on the modulation of the spectral signatures of CPs through the IFE for the detection and discrimination of closely related polynuclear aromatic species.more » « less
-
Abstract This study presents a wearable plant tattoo sensor array designed for continuous monitoring of leaf temperature, relative water content, and biopotential. Current plant wearable sensor technologies often require relatively bulky substrates for sensor support and adhesives for leaf attachment, which potentially can hinder plant growth and affect long‐term measurements. The multifunctional tattoo sensor array overcomes these issues by adhering directly to the leaf surface without the need for additional supporting structures or glues. This array includes a biopotential electrode, a resistive temperature sensor, and an impedimetric water content sensor, all constructed using laminated gold‐on‐polymer thin‐film patterns. Due to their mechanical flexibility, stretchability, and conformability, the sensors can seamlessly attach to leaves via van der Waals force. Performances of these sensors are evaluated to explore plant responses under diverse growth environments. This sensor array is capable of both short‐term and long‐term monitoring, offering continuous data and detailed insights into plant physiological responses to various stress conditions.
-
This paper presents a magnetic sensor based autotracking method for a phased array based wireless power transfer system to be implemented in neuromodulation applications. This method is proposed to track the position of the receiver(placed on a freely moving animal) and transmit the microwave signal with a focused beam to the target receiver. The coordinate locations of the target are obtained from the magnetic sensor and converted into phase information for the phased array. The system is constructed by a 2.4 GHz near-field 4×4 phased array transmitter antenna with 4-bit phase shifters. The phased array TX antenna steers the beam from -5° to -155° in the θ plane. The magnetic sensor can detect the location of the receiver and the in this steering range. The process of tracking the the target and focusing the beam has been evaluated by simulation.more » « less
-
The Haystack Telescope is an antenna with a diameter of 37 m and an elevation-dependent surface accuracy of ≤100μm that is capable of millimeter-wave observations. The radome-enclosed instrument serves as a radar sensor for space situational awareness, with about one-third of the time available for research by MIT Haystack Observatory. Ongoing testing with the K-band (18–26 GHz) and W-band receivers (currently 85–93 GHz) is preparing the inclusion of the telescope into the Event Horizon Telescope (EHT) array and the use as a single-dish research telescope. Given its geographic location, the addition of the Haystack Telescope to current and future versions of the EHT array would substantially improve the image quality.more » « less