skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A Sensor Array for the Ultrasensitive Discrimination of Heavy Metal Pollutants in Seawater
Abstract

Metal cations are potent environmental pollutants that negatively impact human health and the environment. Despite advancements in sensor design, the simultaneous detection and discrimination of multiple heavy metals at sub‐nanomolar concentrations in complex analytical matrices remain a major technological challenge. Here, the design, synthesis, and analytical performance of three highly emissive conjugated polyelectrolytes (CPEs) functionalized with strong iminodiacetate and iminodipropionate metal chelates that operate in challenging environmental samples such as seawater are demonstrated. When coupled with array‐based sensing methods, these polymeric sensors discriminate among nine divalent metal cations (CuII, CoII, NiII, MnII, FeII, ZnII, CdII, HgII, and PbII). The unusually high and robust luminescence of these CPEs enables unprecedented sensitivity at picomolar concentrations in water. Unlike previous array‐based sensors for heavy metals using CPEs, the incorporation of distinct π‐spacer units within the polymer backbone affords more pronounced differences in each polymer's spectroscopic behavior upon interaction with each metal, ultimately producing better analytical information and improved differentiation. To demonstrate the environmental and biological utility, a simple two‐component sensing array is showcased that can differentiate nine metal cation species down to 500 × 10−12 min aqueous media and to 100 × 10−9 min seawater samples collected from the Gulf of Mexico.

 
more » « less
Award ID(s):
1632825
NSF-PAR ID:
10369770
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
33
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dwarf galaxies are found to have lost most of their metals via feedback processes; however, there still lacks consistent assessment on the retention rate of metals in their circumgalactic medium (CGM). Here we investigate the metal content in the CGM of 45 isolated dwarf galaxies withM*= 106.5–9.5M(M200m= 1010.0–11.5M) using the Hubble Space Telescope/Cosmic Origins Spectrograph. While Hi(Lyα) is ubiquitously detected (89%) within the CGM, we find low detection rates (≈5%–22%) in Cii, Civ, Siii, Siiii, and Siiv, largely consistent with literature values. Assuming these ions form in the cool (T≈ 104K) CGM with photoionization equilibrium, the observed Hiand metal column density profiles can be best explained by an empirical model with low gas density and high volume filling factor. For a typical galaxy withM200m= 1010.9M(median of the sample), our model predicts a cool gas mass ofMCGM,cool∼ 108.4M, corresponding to ∼2% of the galaxy’s baryonic budget. Assuming a metallicity of 0.3 Z, we estimate that the dwarf galaxy’s cool CGM likely harbors ∼10% of the metals ever produced, with the rest either in more ionized states in the CGM or transported to the intergalactic medium. We further examine the EAGLE simulation and show that Hiand low ions may arise from a dense cool medium, while Civarises from a diffuse warmer medium. Our work provides the community with a uniform data set on dwarf galaxies’ CGM that combines our recent observations, additional archival data and literature compilation, which can be used to test various theoretical models of dwarf galaxies.

     
    more » « less
  2. Abstract

    Increasing trends in base cations, pH, and salinity of freshwaters have been documented in US streams over 50 years. These patterns, collectively known as freshwater salinization syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g.R2= 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis showed co-mobilization (i.e. correlations among combinations of specific conductance (SC), Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peak snow events but could continue over 24 h after SC peaked, suggesting ongoing cation exchange in soils and stream sediments. Mn and Cu concentrations predicted from SC as a proxy indicated acceptable goodness of fit for predictedvs.observed values (Nash–Sutcliffe efficiency > 0.28). Metals concentrations remained elevated for days after SC decreased following snowstorms, suggesting lag times and continued mobilization after road salt use. High-frequency sensor monitoring and proxies associated with FSS may help better predict contaminant pulses and contaminant exceedances in response to salinization and impacts on aquatic life, infrastructure, and drinking water.

     
    more » « less
  3. Abstract

    We report the first statistical analyses of [Cii] and dust continuum observations in six strong Oiabsorber fields at the end of the reionization epoch obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combined with one [Cii] emitter reported in Wu et al., we detect one Oi-associated [Cii] emitter in six fields. At redshifts of Oiabsorbers in nondetection fields, no emitters are brighter than our detection limit within impact parameters of 50 kpc and velocity offsets between ±200 km s−1. The averaged [Cii]-detection upper limit is <0.06 Jy km s−1(3σ), corresponding to the [Cii] luminosity ofL[CII]< 5.8 × 107Land the [Cii]-based star formation rate of SFR[CII]<5.5Myr−1. Cosmological simulations suggest that only ∼10−2.5[Cii] emitters around Oiabsorbers have comparable SFR to our detection limit. Although the detection in one out of six fields is reported, an order of magnitude number excess of emitters obtained from our ALMA observations supports that the contribution of massive galaxies that caused the metal enrichment cannot be ignored. Further, we also found 14 tentative galaxy candidates with a signal-to-noise ratio of ≈4.3 at large impact parameters (>50 kpc) and having larger outflow velocities within ±600 km s−1. If these detections are confirmed in the future, then the mechanism of pushing metals at larger distances with higher velocities needs to be further explored from the theoretical side.

     
    more » « less
  4. Sensors are routinely developed for specific applications, but multipurpose sensors are challenging, due to stability and poor functional design. We report organic materials that operate in solution and gas phase. They show a strong response behaviour to at least three types of environmental changes: pH, amine and metal ion binding/detection. We have confirmed and validated our findings using various analytical and computational methods. We found that the changes in polarity of the solvent and pH not only red shift the tail of the absorption spectra, but also extend the peak optical absorption of these structures by up to 100 nm, with consequential effects on the optical gap and colour changes of the materials. Acid–base response has been studied by spectrophotometric titrations with trifluoroacetic acid (TFA) and triethyl amine (TEA). The experiments show excellent reversibility with greater sensitivity to base than acid for all compounds. Analysis into metal sensing using Zn( ii ) and Cu( ii ) ions as analytes show that the materials can successfully bind the cations forming stable complexes. Moreover, a strong suppression of signal with copper gives an operative modality to detect the copper ion as low as 2.5 × 10 −6 M. The formation of the metal complexes was also confirmed by growing crystals using a slow diffusion method; subsequent single crystal X-ray analysis reveals the ratio of ligand to metal to be 2 to 1. To test sensitivity towards various amine vapours, paper-based sensors have been fabricated. The sensors show a detection capability at 1 ppm of amine concentration. We have employed CIE L * a * b * colour space as the evaluation method, this provides numeric comparison of the samples from different series and allows comparison of small colour differences, which are generally undetectable by the human-eye. It shows that the CIE L * a * b * method can assess both sensitivity to a particular class of analytes and a specificity response to individual amines in this subclass offering an inexpensive and versatile methodology. 
    more » « less
  5. Abstract

    We characterize the multiphase circumgalactic medium (CGM) and galaxy properties atz= 6.0–6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305–3150 to identify one new metal absorber atz= 6.2713 with multiple transitions (Oi, Mgii, Feii,and Cii). They are combined with the published absorbing systems in Davies et al. at the same redshift range to form a sample of nine metal absorbers atz= 6.03–6.49. We identify eight galaxies within 1000 km s−1and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [Oiii] (λλ4959, 5007) doublets and Hβemission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar masses ranging from 107.2to 108.8Mand metallicity between 0.02 and 0.4 solar. Notably, thez= 6.2713 system in the J0305–3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances ofαelements to iron ([α/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α/Fe] ratio. Our modeling of the galaxy’s chemical abundance favors a top-heavy stellar initial mass function and hints that we may be witnessing the contribution of the first generation of Population III stars to the CGM at the end of the reionization epoch.

     
    more » « less