skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Yttria-stabilized barium zirconate surface reactivity at elevated temperatures
Abstract Material changes in yttrium-doped barium zirconate, BaZr 0.8 Y 0.2 O 3– x , were studied using in situ Raman spectroscopy and ex situ x-ray photoelectron spectroscopy analysis. During in situ Raman analysis, samples were heated to temperatures of 300–600 °C and exposed to both dry and humidified H 2 atmospheres. At the lower temperatures (300–450 °C), a new vibrational peak appears in the Raman spectra during exposure to humidified H 2 . The appearance of this feature is reversible, dependent on previous sample history, and possibly results from new, secondary phase formation or lattice distortion.  more » « less
Award ID(s):
1710695
PAR ID:
10192260
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MRS Communications
Volume:
10
Issue:
3
ISSN:
2159-6859
Page Range / eLocation ID:
455 to 460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Here, we report the high-temperature superlubricity phenomenon accomplished in coatings produced by burnishing powders of antimony trioxide (Sb 2 O 3 ) and magnesium silicate hydroxide coated with carbon (MSH/C) onto the nickel superalloy substrate. The tribological analysis performed in an open-air experimental setup revealed that with the increase of testing temperature, the coefficient of friction (COF) of the coating gradually decreases, finally reaching the superlubricity regime (the COF of 0.008) at 300°C. The analysis of worn surfaces using in-situ Raman spectroscopy suggested the synergistic effect of the inner Sb 2 O 3 adhesion layer and the top MSH/C layer, which do not only isolate the substrate from the direct exposure to sliding but also protect it from oxidation. The cross-sectional transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated the tribochemically-activated formation of an amorphous carbon layer on the surface of the coating during sliding. Formation of the film enables the high-temperature macroscale superlubricity behavior of the material system. 
    more » « less
  2. Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and operando Raman spectroscopy were used to study the electrochemical performance and carbon tolerance of SOFCs operating with niobium doped SrTiO 3 (STN) anodes infiltrated with combinations of Ni, Co, and Ce 0.8 Gd 0.2 O 2 (CGO) added to improve catalytic activity. Cell anodes were exposed to fuel feeds of humidified H 2 , pure CH 4 and combinations of CO 2 and CH 4 at an operating temperature of 750 °C. Under pure CH 4 , Raman data show that carbon forms on all anodes containing Ni. In cells with CGO, deposited carbon results in a decreased polarization resistance. This behavior may be due to benefits conferred by CGO to the electrocatalytic activity of triple phase boundaries, presumably through improved oxide ion conductivity and/or due to carbon securing a better electrical connection in the electrodes. Raman spectra from Co-only containing anodes show no sign of carbon deposition. The absence of observable carbon together with low frequency processes observed in the EIS suggest that Co may play a role in oxidizing carbon before measurable amounts accumulate. 
    more » « less
  3. To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing. 
    more » « less
  4. This paper reports a robust strategy to catalyze in situ C–H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82–85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C–H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C–H bond activation when coupled with natural enzymes. 
    more » « less
  5. Abstract In this study, a novel deposition technique that utilizes diethylzinc (C4H10ZnO) with H2O to form a ZnO adhesion layer was proposed. This technique was followed by the deposition of vaporized nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) and H2gas to facilitate the deposit of uniform layers of nickel on the ZnO adhesion layer using atomic layer deposition. Deposition temperatures ranged from 220 to 300 °C. Thickness, composition, and crystallographic structure results were analyzed using spectroscopic ellipsometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), respectively. An average growth rate of approximately 0.0105 angstroms per cycle at 260 °C was observed via ellipsometry. Uniform deposition of ZnO with less than 1% of Ni was displayed by utilizing the elemental analysis function via SEM, thereby providing high-quality images. XPS revealed ionizations consistent with nickel and ZnO through the kinetic and binding energies of each detected electron. XRD provided supplemental information regarding the validity of ZnO by exhibiting crystalline attributes, revealing the presence of its hexagonal wurtzite structure. 
    more » « less