skip to main content

This content will become publicly available on December 1, 2023

Title: Nucleation and growth of molybdenum disulfide grown by thermal atomic layer deposition on metal oxides
To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with more » vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Vacuum Science & Technology A
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2more »thin films were compared.« less
  2. This study reports the preparation of a set of hybrid materials consisting of molybdenum disulfide (MoS 2 ) nanopatches on reduced graphene oxide (rGO) nanosheets by microwave specific heating of graphene oxide and molecular molybdenum precursors followed by thermal annealing in 3% H 2 and 97% Ar. The microwave process converts graphene oxide to ordered rGO nanosheets that are sandwiched between uniform thin layers of amorphous molybdenum trisulfide (MoS 3 ). The subsequent thermal annealing converts the intermediate layers into MoS 2 nanopatches with two-dimensional layered structures whose defect density is tunable by controlling the annealing temperature at 250, 325 and 600 °C, respectively. All three MoS 2 /rGO samples and the MoS 3 /rGO intermediate after the microwave step show a high Li-ion intercalation capacity in the initial 10 cycles (over 519 mA h g MoSx −1 , ∼3.1 Li + ions per MoS 2 ) which is attributed to the small MoS 2 nanopatches in the MoS 2 /rGO hybrids while the effect of further S-rich defects is insignificant. In contrast, the Zn-ion storage properties strongly depend on the defects in the MoS 2 nanopatches. The highly defective MoS 2 /rGO hybrid prepared by annealing at 250 °Cmore »shows the highest initial Zn-ion storage capacity (∼300 mA h g MoSx −1 ) and close to 100% coulombic efficiency, which is dominated by pseudocapacitive surface reactions at the edges or defects in the MoS 2 nanopatches. The fast fading in the initial cycles can be mitigated by applying higher charge/discharge currents or extended cycles. This study validates that defect engineering is critical for improving Zn-ion storage.« less
  3. Abstract

    An ultra-thin overcoating of zirconium oxide (ZrO2) film on CuO-ZnO-Al2O3(CZA) catalysts by atomic layer deposition (ALD) was proved to enhance the catalytic performance of CZA/HZSM-5 (H form of Zeolite Socony Mobil-5) bifunctional catalysts for hydrogenation of CO2to dimethyl ether (DME). Under optimal reaction conditions (i.e. 240 °C and 2.8 MPa), the yield of product DME increased from 17.22% for the bare CZA/HZSM-5 catalysts, to 18.40% for the CZA catalyst after 5 cycles of ZrO2ALD with HZSM-5 catalyst. All the catalysts modified by ZrO2ALD displayed significantly improved catalytic stability of hydrogenation of CO2to DME reaction, compared to that of CZA/HZSM-5 bifunctional catalysts. The loss of DME yield in 100 h of reaction was greatly mitigated from 6.20% (loss of absolute value) to 3.01% for the CZA catalyst with 20 cycles of ZrO2ALD overcoating. Characterizations including hydrogen temperature programmed reduction, x-ray powder diffraction, and x-ray photoelectron spectroscopy revealed that there was strong interaction between Cu active centers and ZrO2.

  4. Astounding graphitic carbon nitride (g-C 3 N 4 ) nanostructures have attracted huge attention due to their unique electronic structures, suitable band gap, and thermal and chemical stability, and are insinuating as a promising candidate for photocatalytic and energy harvesting applications. The growth of a free-standing film is desirable for widespread electronic devices and electrochemical applications. Here, we present a facile approach to prepare free-standing films (15 mm × 10 mm × 0.5 mm) comprising g-C 3 N 4 nanolayers by the pyrolysis of dicyandiamide (C 2 H 4 N 4 ) utilizing the chemical vapor deposition (CVD) technique. The synthesis is done under low-pressure conditions of argon (∼3 Torr) and at a temperature of 600 °C. The as-synthesized g-C 3 N 4 films are systematically studied for their structural/microstructural characterization using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and UV-visible spectroscopy techniques. The excitation-dependent photoluminescence (PL) spectra of the as-synthesized g-C 3 N 4 film exhibited an intense, stable and broad emission peak in the visible region at ∼459 nm. The emission spectra of free-standing g-C 3 N 4 films show a blue shift and band sharpeningmore »compared to that of the g-C 3 N 4 powder.« less
  5. Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports themore »conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.« less