skip to main content


Title: Understanding How Complex Terrain Impacts Tornado Dynamics Using a Suite of High-Resolution Numerical Simulations
Abstract A simulated vortex within a large-eddy simulation is subjected to various surface terrain, implemented through the immersed boundary method, to analyze the effects of complex topography on vortex behavior. Thirty simulations, including a control with zero-height terrain, are grouped into four categories—2D sinusoidal hills, 3D hills, valleys, and ridges—with slight modifications within each category. A medium-swirl-ratio vortex is translated over shallow terrain, which is modest in size relative to the vortex core diameter and with no explicitly defined surface roughness. While domain size restricts results to the very near-field effects of terrain, vortex–terrain interaction yields notable results. Terrain influences act to increase the variability of the near-surface vortex, including a notable leftward (rightward) deflection, acceleration (deceleration), and an expansion (a contraction) of the vortex as it ascends (descends) the terrain owing to changes in the corner flow swirl ratio. Additionally, 10-m track analyses show stronger horizontal wind speeds are found 1) on upslope terrain, resulting from transient subvortices that are more intense compared to the control simulation, and 2) in between adjacent hills simultaneous with strong pressure perturbations that descend from aloft. Composite statistics confirm that the region in between adjacent hills has the strongest horizontal wind speeds, while upward motions are more intense during ascent. Overall, valley (ridge) simulations have the largest horizontal (vertically upward) wind speeds. Last, horizontal and vertical wind speeds are shown to be affected by other terrain properties such as slope steepness and two-dimensionality of the terrain.  more » « less
Award ID(s):
1823478
NSF-PAR ID:
10192384
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
10
ISSN:
0022-4928
Page Range / eLocation ID:
3277 to 3300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environments characterized by large values of vertical wind shear and modest convective available potential energy (CAPE) are colloquially referred to as high-shear, low-CAPE (HSLC) environments. Convection within these environments represents a considerable operational forecasting challenge. Generally, it has been determined that large low-level wind shear and steep low-level lapse rates—along with synoptic-scale forcing for ascent—are common ingredients supporting severe HSLC convection. This work studies the specific processes that lead to the development of strong surface vortices in HSLC convection, particularly associated with supercells embedded within a quasi-linear convective system (QLCS), and how these processes are affected by varying low-level shear vector magnitudes and lapse rates. Analysis of a control simulation, conducted with a base state similar to a typical HSLC severe environment, reveals that the key factors in the development of a strong surface vortex in HSLC embedded supercells are (i) a strong low- to midlevel mesocyclone, and (ii) a subsequent strong low-level updraft that results from the intense, upward-pointing dynamic perturbation pressure gradient acceleration. Through a matrix of high-resolution, idealized simulations, it is determined that sufficient low-level shear vector magnitudes are necessary for the development of low- to midlevel vertical vorticity [factor (i)], while steeper low-level lapse rates provide stronger initial low-level updrafts [factor (ii)]. This work shows why increased low-level lapse rates and low-level shear vector magnitudes are important to HSLC convection on the storm scale, while also revealing similarities between surface vortexgenesis in HSLC embedded supercells and higher-CAPE supercells.

     
    more » « less
  2. An ensemble of 10 forecasts is produced for the 20 May 2013 Newcastle–Moore EF5 tornado and its parent supercell using a horizontal grid spacing of 50 m, nested within ensemble forecasts with 500-m horizontal grid spacing initialized via ensemble Kalman filter data assimilation of surface and radar observations. Tornadic circulations are predicted in all members, though the intensity, track, and longevity of the predicted tornado vary substantially among members. Overall, tornadoes in the ensemble forecasts persisted longer and moved to the northeast faster than the observed tornado. In total, 8 of the 10 ensemble members produce tornadoes with winds corresponding to EF2 intensity or greater, with maximum instantaneous near-surface horizontal wind speeds of up to 130 m s−1and pressure drops of up to 120 hPa; values similar to those reported in observational studies of intense tornadoes. The predicted intense tornadoes all acquire well-defined two-cell vortex structure, and exhibit features common in observed tornadic storms, including a weak-echo notch and low reflectivity within the mesocyclone. Ensemble-based probabilistic tornado forecasts based upon near-surface wind and/or vorticity fields at 10 m above the surface produce skillful forecasts of the tornado in terms of area under the relative operating characteristic curve, with probability swaths extending along and to the northeast of the observed tornado path. When probabilistic swaths of 0–3- and 2–5-km updraft helicity are compared to the swath of wind at 10 m above the surface exceeding 29 m s−1, a slight northwestward bias is present, although the pathlength, orientation, and the placement of minima and maxima show very strong agreement.

     
    more » « less
  3. Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain. 
    more » « less
  4. The significance of air flow within dense canopies situated on hilly terrain is not in dispute given its relevance to a plethora of applications in meteorology, wind energy, air pollution, atmospheric chemistry and ecology. While the mathematical description of such flows is complex, progress has proceeded through an interplay between experiments, mathematical modelling, and more recently large‐eddy simulations (LESs). In this contribution, LES is used to investigate the topography‐induced changes in the flow field and how these changes propagate to scalar transport within the canopy. The LES runs are conducted for a neutral atmospheric boundary layer above a tall dense forested canopy situated on a train of two‐dimensional sinusoidal hills. The foliage distribution is specified using leaf area density measurements collected in an Amazon rain forest. A series of LES runs with increasing hill amplitude are conducted to disturb the flow from its flat‐terrain state. The LES runs successfully reproduce the recirculation region and the flow separation on the lee‐side of the hill within the canopy region in agreement with prior laboratory and LES studies. Simulation results show that air parcels released inside the canopy have two preferential pathways to escape the canopy region: a “local” pathway similar to that encountered in flat terrain and an “advective” pathway near the flow‐separation region. Further analysis shows that the preferential escape location over the flow‐separation region leads to a “chimney”‐like effect that becomes amplified for air parcel releases near the forest floor. The work here demonstrates that shear‐layer turbulence is the main mechanism exporting air parcels out the canopy for both pathways. However, compared to flat terrain, the mean updraught at the flow separation induced by topography significantly shortens the in‐canopy residence time for air parcels released in the lower canopy, thus enhancing the export fraction of reactive gases.

     
    more » « less
  5. In the study, a series of wind tunnel tests were conducted to investigate wind effects acting on dome structures (1/60 scale) induced by straight-line winds at a Reynolds number in the order of 106. Computational Fluid Dynamics (CFD) simulations were performed as well, including a Large Eddy Simulation (LES) and Reynolds-Averaged Navier–Stokes (RANS) simulation, and their performances were validated by a comparison with the wind tunnel testing data. It is concluded that wind loads generally increase with upstream wind velocities, and they are reduced over suburban terrain due to ground friction. The maximum positive pressure normally occurs near the base of the dome on the windward side caused by the stagnation area and divergence of streamlines. The minimum suction pressure occurs at the apex of the dome because of the blockage of the dome and convergence of streamlines. Suction force is the most significant among all wind loads, and special attention should be paid to the roof design for proper wind resistance. Numerical simulations also indicate that LES results match better with the wind tunnel testing in terms of the distribution pattern of the mean pressure coefficient on the dome surface and total suction force. The mean and root-mean-square errors of the meridian pressure coefficient associated with the LES are about 60% less than those associated with RANS results, and the error of suction force is about 40–70% less. Moreover, the LES is more accurate in predicting the location of boundary layer separation and reproducing the complex flow field behind the dome, and is superior in simulating vortex structures around the dome to further understand the unsteadiness and dynamics in the flow field.

     
    more » « less