skip to main content


Title: Enabling Multi-GPU Support in gem5
In the past decade, GPUs have become an important resource for compute-intensive, general-purpose GPU applications such as machine learning, big data analysis, and large-scale simulations. In the future, with the explosion of machine learning and big data, application demands will keep increasing, resulting in more data and computation being pushed to GPUs. However, due to the slowing of Moore’s Law and rising manufacturing costs, it is becoming more and more challenging to add compute resources into a single GPU device to improve its throughput. As a result, spreading work across multiple GPUs is popular in data-centric and scientific applications. For example, Facebook uses 8 GPUs per server in their recent machine learning platform. However, research infrastructure has not kept pace with this trend: most GPU hardware simulators, including gem5, only support a single GPU. Thus, it is hard to study interference between GPUs, communication between GPUs, or work scheduling across GPUs. Our research group has been working to address this shortcoming by adding multi-GPU support to gem5. Here, we discuss the changes that were needed, which included updating the emulated driver, GPU components, and coherence protocol.  more » « less
Award ID(s):
1925485
NSF-PAR ID:
10192412
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
gem5 Users Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  2. null (Ed.)
    Edge cloud data centers (Edge) are deployed to provide responsive services to the end-users. Edge can host more powerful CPUs and DNN accelerators such as GPUs and may be used for offloading tasks from end-user devices that require more significant compute capabilities. But Edge resources may also be limited and must be shared across multiple applications that process requests concurrently from several clients. However, multiplexing GPUs across applications is challenging. With edge cloud servers needing to process a lot of streaming and the advent of multi-GPU systems, getting that data from the network to the GPU can be a bottleneck, limiting the amount of work the GPU cluster can do. The lack of prompt notification of job completion from the GPU can also result in poor GPU utilization. We build on our recent work on controlled spatial sharing of a single GPU to expand to support multi-GPU systems and propose a framework that addresses these challenges. Unlike the state-of-the-art uncontrolled spatial sharing currently available with systems such as CUDA-MPS, our controlled spatial sharing approach uses each of the GPU in the cluster efficiently by removing interference between applications, resulting in much better, predictable, inference latency We also use each of the cluster GPU's DMA engines to offload data transfers to the GPU complex, thereby preventing the CPU from being the bottleneck. Finally, our framework uses the CUDA event library to give timely, low overhead GPU notifications. Our evaluations show we can achieve low DNN inference latency and improve DNN inference throughput by at least a factor of 2. 
    more » « less
  3. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broad categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1]. 
    more » « less
  4. In recent years, there have been phenomenal increases in Artificial Intelligence and Machine Learning that require data collection, mining and using data sets to teach computers certain things to learn, analyze image and speech recognition. Machine Learning tasks require a lot of computing power to carry out numerous calculations. Therefore, most servers are powered by Graphics Processing Units (GPUs) instead of traditional CPUs. GPUs provide more computational throughput per dollar spent than traditional CPUs. Open Compute Servers forum has introduced the state-of-the-art machine learning servers “Big Sur” recently. Big Sur unit consists of 4OU (OpenU) chassis housing eight NVidia Tesla M40 GPUs and two CPUs along with SSD storage and hot-swappable fans at the rear. Management of the airflow is a critical requirement in the implementation of air cooling for rack mount servers to ensure that all components, especially critical devices such as CPUs and GPUs, receive adequate flow as per requirement. In addition, component locations within the chassis play a vital role in the passage of airflow and affect the overall system resistance. In this paper, sizeable improvement in chassis ducting is targeted to counteract effects of air diffusion at the rear of air flow duct in “Big Sur” Open Compute machine learning server wherein GPUs are located directly downstream from CPUs. A CFD simulation of the detailed server model is performed with the objective of understanding the effect of air flow bypass on GPU die temperatures and fan power consumption. The cumulative effect was studied by simulations to see improvements in fan power consumption by the server. The reduction in acoustics noise levels caused by server fans is also discussed. 
    more » « less
  5. Outlier detection (OD) is a key machine learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection. In this work, we propose TOD, the first tensor-based system for efficient and scalable outlier detection on distributed multi-GPU machines. A key idea behind TOD is decomposing complex OD applications into a small collection of basic tensor algebra operators. This decomposition enables TOD to accelerate OD computations by leveraging recent advances in deep learning infrastructure in both hardware and software. Moreover, to deploy memory-intensive OD applications on modern GPUs with limited on-device memory, we introduce two key techniques. First, provable quantization speeds up OD computations and reduces its memory footprint by automatically performing specific floating-point operations in lower precision while provably guaranteeing no accuracy loss. Second, to exploit the aggregated compute resources and memory capacity of multiple GPUs, we introduce automatic batching , which decomposes OD computations into small batches for both sequential execution on a single GPU and parallel execution across multiple GPUs. TOD supports a diverse set of OD algorithms. Evaluation on 11 real-world and 3 synthetic OD datasets shows that TOD is on average 10.9X faster than the leading CPU-based OD system PyOD (with a maximum speedup of 38.9X), and can handle much larger datasets than existing GPU-based OD systems. In addition, TOD allows easy integration of new OD operators, enabling fast prototyping of emerging and yet-to-discovered OD algorithms. 
    more » « less