skip to main content

Title: Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests
Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15–50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·g lichen −1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use more » of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
24682 to 24688
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-richmore »symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.

    « less
  2. Ochman, Howard (Ed.)
    Abstract Plant endosymbiosis with nitrogen-fixing cyanobacteria has independently evolved in diverse plant lineages, offering a unique window to study the evolution and genetics of plant–microbe interaction. However, very few complete genomes exist for plant cyanobionts, and therefore little is known about their genomic and functional diversity. Here, we present four complete genomes of cyanobacteria isolated from bryophytes. Nanopore long-read sequencing allowed us to obtain circular contigs for all the main chromosomes and most of the plasmids. We found that despite having a low 16S rRNA sequence divergence, the four isolates exhibit considerable genome reorganizations and variation in gene content. Furthermore, three of the four isolates possess genes encoding vanadium (V)-nitrogenase (vnf), which is uncommon among diazotrophs and has not been previously reported in plant cyanobionts. In two cases, the vnf genes were found on plasmids, implying possible plasmid-mediated horizontal gene transfers. Comparative genomic analysis of vnf-containing cyanobacteria further identified a conserved gene cluster. Many genes in this cluster have not been functionally characterized and would be promising candidates for future studies to elucidate V-nitrogenase function and regulation.
  3. Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae , which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc ( Anabaena ) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme , and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia . However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia , including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia,more »was capable of high-frequency infection of Blasia . Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.« less
  4. Elliott, Kathryn T. (Ed.)
    ABSTRACT In Anabaena variabilis , the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co 2+ -inducible coaT promoter, activated the expression of both nifB1 and nifB2 . Activation of nifB2 , but not nifB1 , by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2 . Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated themore »expression of the entire nif2 gene cluster from a nifB2 :: nifB1 :: nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.« less
  5. Abstract. Oligotrophic regions play a central role in global biogeochemical cycles, with microbial communities in these areas representing an important term in global carbon budgets. While the general structure of microbial communities has been well documented in the global ocean, some remote regions such as the western tropical South Pacific (WTSP) remain fundamentally unexplored. Moreover, the biotic and abiotic factors constraining microbial abundances and distribution remain not well resolved. In this study, we quantified the spatial (vertical and horizontal) distribution of major microbial plankton groups along a transect through the WTSP during the austral summer of 2015, capturing important autotrophic and heterotrophic assemblages including cytometrically determined abundances of non-pigmented protists (also called flagellates). Using environmental parameters (e.g., nutrients and light availability) as well as statistical analyses, we estimated the role of bottom–up and top–down controls in constraining the structure of the WTSP microbial communities in biogeochemically distinct regions. At the most general level, we found a typical tropical structure, characterized by a shallow mixed layer, a clear deep chlorophyll maximum at all sampling sites, and a deep nitracline. Prochlorococcus was especially abundant along the transect, accounting for 68±10.6% of depth-integrated phytoplankton biomass. Despite their relatively low abundances,more »picophytoeukaryotes (PPE) accounted for up to 26±11.6% of depth-integrated phytoplankton biomass, while Synechococcus accounted for only 6±6.9%. Our results show that the microbial community structure of the WTSP is typical of highly stratified regions, and underline the significant contribution to total biomass by PPE populations. Strong relationships between N2 fixation rates and plankton abundances demonstrate the central role of N2 fixation in regulating ecosystem processes in the WTSP, while comparative analyses of abundance data suggest microbial community structure to be increasingly regulated by bottom–up processes under nutrient limitation, possibly in response to shifts in abundances of high nucleic acid bacteria (HNA).

    « less