Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoform
Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources
ABSTRACT Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO 2 ) into the potent greenhouse gas methane (CH 4 ). Here, we report carbon ( 13 C/ 12 C) and hydrogen ( 2 H/ 1 H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris . The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis ( 13 α CO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations ( 2 α H2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2 α H2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2 H, and that 2 α H2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial more »
- Award ID(s):
- 1631814
- Publication Date:
- NSF-PAR ID:
- 10192517
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 86
- Issue:
- 19
- ISSN:
- 0099-2240
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Azotobacter vinelandii mutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF. -
Teagle, Damon A (Ed.)The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow usmore »
-
null (Ed.)Abstract. American bison (Bison bison L.) have recovered from the brink ofextinction over the past century. Bison reintroduction creates multipleenvironmental benefits, but impacts on greenhouse gas emissions are poorlyunderstood. Bison are thought to have produced some 2 Tg yr−1 of theestimated 9–15 Tg yr−1 of pre-industrial enteric methane emissions,but few measurements have been made due to their mobile grazing habits andsafety issues associated with measuring non-domesticated animals. Here, wemeasure methane and carbon dioxide fluxes from a bison herd on an enclosedpasture during daytime periods in winter using eddy covariance. Methaneemissions from the study area were negligible in the absence of bison(mean ± standard deviation = −0.0009 ± 0.008 µmol m−2 s−1) and were significantly greater than zero,0.048 ± 0.082 µmol m−2 s−1, with a positively skeweddistribution, when bison were present. We coupled bison location estimatesfrom automated camera images with two independent flux footprint models tocalculate a mean per-animal methane efflux of 58.5 µmol s−1 per bison, similar to eddy covariance measurements ofmethane efflux from a cattle feedlot during winter. When we sum theobservations over time with conservative uncertainty estimates we arrive at81 g CH4 per bison d−1 with 95 % confidence intervalsbetween 54 and 109 g CH4 per bison d−1. Uncertainty wasdominated by bison location estimates (46 % of the total uncertainty),then the flux footprint model (33 %) and the eddy covariance measurements(21 %), suggesting that making higher-resolution animal location estimatesis a logical starting point formore »
-
ABSTRACT Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N 2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N 2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems. IMPORTANCE Trichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We usedmore »
-
Non-thermal plasma Methane capture Carbon dioxide capture Metal organic framework Methanol synthesis Atmospheric remediation 1. Introduction The stabilization of CO2 and CH4 concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. From these gases, CH4 is the most dominant anthropogenic greenhouse gas (after CO2). Methane can react with nitrogen oxides leading to tropospheric ozone pollution and posses a higher global warming potential (GWP) than CO2. It is 84 times more potent than CO2 over the first 20 years after release and ~28 times more potent after a century. Methane concentrations could be restored to preindustrial levels by removing ~3.2 of the 5.3 Gt of CH4 currently in the atmosphere [1]. Rather than capturing and storing the methane, CH4 could be oxidized to CO2, through the ther- modynamically favorable reaction: CH4 + 2O2 → CO2 + 2H2O; ΔHrx = –803 kJ mol–1. With the possible production of valuable condensates such as form- aldehyde and methanol when employing different reaction conditions (i. e., gas ratio, oxidant type, temperature) and rational selected catalysts. The large activation barrier associated with splittingmore »