skip to main content


Title: Sex-linked genetic diversity originates from persistent sociocultural processes at microgeographic scales
Population genetics has been successful at identifying the relationships between human groups and their interconnected histories. However, the link between genetic demography inferred at large scales and the individual human behaviours that ultimately generate that demography is not always clear. While anthropological and historical context are routinely presented as adjuncts in population genetic studies to help describe the past, determining how underlying patterns of human sociocultural behaviour impact genetics still remains challenging. Here, we analyse patterns of genetic variation in village-scale samples from two islands in eastern Indonesia, patrilocal Sumba and a matrilocal region of Timor. Adopting a ‘process modelling’ approach, we iteratively explore combinations of structurally different models as a thinking tool. We find interconnected socio-genetic interactions involving sex-biased migration, lineage-focused founder effects, and on Sumba, heritable social dominance. Strikingly, founder ideology, a cultural model derived from anthropological and archaeological studies at larger regional scales, has both its origins and impact at the scale of villages. Process modelling lets us explore these complex interactions, first by circumventing the complexity of formal inference when studying large datasets with many interacting parts, and then by explicitly testing complex anthropological hypotheses about sociocultural behaviour from a more familiar population genetic standpoint.  more » « less
Award ID(s):
1841416
NSF-PAR ID:
10192557
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
6
Issue:
8
ISSN:
2054-5703
Page Range / eLocation ID:
190733
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwiseFST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin,USA. Using 151 putatively neutral and 29 candidate adaptiveSNPloci, we found that climate‐related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables andFSTacross all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin‐wide to the metapopulation scale). Sensitivity analysis (leave‐one‐population‐out) revealed consistent relationships between climate variables andFSTwithinthree metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (= 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

     
    more » « less
  2. Abstract Aim

    Natural selection typically results in the homogenization of reproductive traits, reducing natural variation within populations; thus, highly polymorphic species present unresolved questions regarding the mechanisms that shape and maintain gene flow given a diversity of phenotypes. We used an integrative framework to characterize phenotypic diversity and assess how evolutionary history and population genetics affect the highly polymorphic nature of a California endemic lily.

    Location

    California, United States.

    Taxon

    Butterfly mariposa lily,Calochortus venustus(Liliaceae).

    Methods

    We summarized phenotypic diversity at both metapopulation and subpopulation scales to explore spatial phenotypic distributions. We sampled 174 individuals across the species range representing multiple samples for each population and each phenotype. We used restriction‐site‐associated DNA sequencing (RAD‐Seq) to detect population clusters, gene flow between phenotypes and between populations, infer haplotype networks, and reconstruct ancestral range evolution to infer historical migration and range expansion.

    Results

    Polymorphic floral traits within the species such as petal pigmentation and distal spots are geographically structured, and inferred evolutionary history is consistent with a ring species pattern involving a complex of populations having experienced sequential change in genetic and phenotypic variation from the founding population. Populations remain interconnected yet have differentiated from each other along a bifurcating south‐to‐north range expansion, consequently indicating parallel evolution towards the white morphotype in the northern range. Thus, our phylogeographical analyses reveal morphological convergence with population genetic cohesion irrespective of phenotypic diversity.

    Main conclusions

    Phenotypic variation in the highly polymorphicCalochortus venustusis not due to genetic differentiation between phenotypes; rather there is genetic cohesion within six geographically defined populations, some of which maintain a high level of within‐population phenotypic diversity. Our results demonstrate that analyses of polymorphic taxa greatly benefit from disentangling phenotype from genotype at various spatial scales. We discuss results in light of ring species concepts and the need to determine the adaptive significance of the patterns we report.

     
    more » « less
  3. null (Ed.)
    Abstract “Synthetic recombinant” populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential. 
    more » « less
  4. Abstract

    Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within‐population genetic diversity and no evidence of consistently increased between‐population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.

     
    more » « less
  5. Abstract Aim

    Among the main biogeographical hypotheses explaining the remarkable diversity of fishes in the Neotropics is the “palaeogeographical hypothesis”, focusing on vicariance, and the “hydrogeological hypothesis”, focusing on geodispersal. Yet while reflecting different processes, they may result in similar biogeographical patterns. We employed a model‐based Bayesian approach to test these alternative hypotheses and determine which shaped the phylogeographical patterns observed in a group of Neotropical fishes.

    Location

    South America.

    Taxon

    Salminus.

    Methods

    We used mitochondrial and nuclear markers to infer phylogenetic relationships and estimate divergence times amongSalminusspecies, associating the results with known geological events. We then employed approximate Bayesian computation (ABC) to explore changes in population size over time, asking whether vicariance or geodispersal events best explain the phylogeographical signature observed in the data. Because geodispersal captures a few individuals from a parental population, which can then expand and lead to a new lineage, we expect to find genetic signatures of a founder event following population expansion under this scenario, but not under vicariance.

    Results

    The analyses suggest that the diversification process inSalminusbegan in Upper Miocene, andABCindicates that it involved both vicariance and geodispersal events: while a vicariance event better explains the phylogeographical structure withinS. brasiliensisand the genetic patterns of differentiation betweenS. sp. Amazon andS. sp. Araguaia, geodispersal appears to have been the most important event structuring lineages ofSalminus hilarii.

    Main Conclusions

    Both vicariance and geodispersal signatures were detected in our biological model, inferring a complex yet realistic demographic history ofSalminuslineages. The correspondence between theABCresults and traditional phylogeographical interpretations provide further confidence in the models drawn and tested. This study reinforces the value of applying anABCframework in phylogeographical studies, particularly for those interested in testing alternative and biologically plausible processes underlying similar biogeographical patterns.

     
    more » « less