skip to main content


Title: Potential impacts of mercury released from thawing permafrost
Abstract

Mercury (Hg) is a naturally occurring element that bonds with organic matter and, when converted to methylmercury, is a potent neurotoxicant. Here we estimate potential future releases of Hg from thawing permafrost for low and high greenhouse gas emissions scenarios using a mechanistic model. By 2200, the high emissions scenario shows annual permafrost Hg emissions to the atmosphere comparable to current global anthropogenic emissions. By 2100, simulated Hg concentrations in the Yukon River increase by 14% for the low emissions scenario, but double for the high emissions scenario. Fish Hg concentrations do not exceed United States Environmental Protection Agency guidelines for the low emissions scenario by 2300, but for the high emissions scenario, fish in the Yukon River exceed EPA guidelines by 2050. Our results indicate minimal impacts to Hg concentrations in water and fish for the low emissions scenario and high impacts for the high emissions scenario.

 
more » « less
Award ID(s):
1900795
NSF-PAR ID:
10192587
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming.

     
    more » « less
  2. Abstract

    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.

     
    more » « less
  3. Abstract

    Arctic rivers are sensitive to climate and environmental change, but the biogeochemical response remains poorly understood. Monthly size‐fractionated dissolved organic matter (DOM) samples from the lower Yukon River were characterized using UV–visible, fluorescence, and Fourier transform‐infrared (FT‐IR) spectroscopy techniques. The EEM‐PARAFAC analysis revealed three major fluorescent DOM components, including two humic‐like components (C480and C400) and one protein‐like component (C310), with their relative importance following the order of C480 ≥ C400 > C310in the high‐molecular‐weight DOM (1 kDa–0.4 μm) and C400 > C480 > C310in the low‐molecular‐weight DOM pool (< 1 kDa). Transformation in DOM and change in sources were manifested in major fluorescent components and optical properties, including biological index (BIX), humification index (HIX), spectral slope (S275–295) and specific UV absorbance at 254 nm (SUVA254). These changes occurred within different DOM size‐fractions and among ice‐covered, spring freshet, and open seasons. Joint analysis of EEM and FT‐IR spectra using a data fusion technique showed that humic‐like DOM is mostly associated with C─H, C═C, and C─O bonds, while protein‐like DOM is correlated more with C─N and N─H related structures. DOM aromaticity and the ratios of HIX to BIX and protein‐like to humic‐like components may be used as a compelling proxy to measure change in source waters and to infer permafrost dynamics. Our results provide insight into the seasonal variation in DOM composition for different size‐fractions in the lower Yukon River, and a baseline dataset against which future changes can be understood in the context of arctic basin biogeochemical cycling.

     
    more » « less
  4. Abstract Per‐ and polyfluoroalkyl substances (PFAS) and mercury (Hg) are harmful compounds that are widely present in the environment, partly due to spills and atmospheric pollution. The presence of PFAS and Hg in the tissues of animals that are harvested by rural and Indigenous Alaskans is of great concern, yet fish in Arctic Alaska have not previously been assessed for concentrations of PFAS. Fish species of subsistence and recreational importance were collected from nearshore Beaufort and Chukchi Sea, Alaska habitats and assessed for PFAS and total mercury concentrations [THg]. We found multiple PFAS compounds present at low levels (<3 μg/kg) in the muscle tissue of inconnu, broad whitefish, Dolly Varden char, Arctic flounder, saffron cod, humpback whitefish, and least cisco. In addition, [THg] levels in these fish were well below levels triggering local fish consumption guidelines (<170 μg/kg). These initial results indicate no evidence of the Alaska Arctic nearshore fish species examined as an avenue of PFAS or Hg exposure to people who harvest them. However, sources and trends of these contaminants in the Arctic require further investigation. Environ Toxicol Chem 2023;00:1–7. © 2023 SETAC 
    more » « less
  5. Abstract

    Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.

     
    more » « less