Abstract Metronidazole and nimorazole are antibiotics of a nitroimidazole group which also may be potentially utilized as hypoxia radiosensitizers for the treatment of cancerous tumors. Hyperpolarization of15N nuclei in these compounds using SABRE‐SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei) approach provides dramatic enhancement of detection sensitivity of these analytes using magnetic resonance spectroscopy and imaging. Methanol‐d4is conventionally employed as a solvent in SABRE hyperpolarization process. Herein, we investigate SABRE‐SHEATH hyperpolarization of isotopically labeled [15N3]metronidazole and [15N3]nimorazole in nondeuterated methanol and ethanol solvents. Optimization of such hyperpolarization parameters as polarization transfer magnetic field, temperature, parahydrogen flow rate and pressure allowed us to obtain an average15N polarization of up to 7.2–7.4 % for both substrates. The highest15N polarizations were observed in methanol‐d4for [15N3]metronidazole and in ethanol for [15N3]nimorazole. At a clinically relevant magnetic field of 1.4 T the15N nuclei of these substrates possess long characteristic hyperpolarization lifetimes (T1) of ca. 1 to ca. 7 min. This study represents a major step toward SABRE in more biocompatible solvents, such as ethanol, and also paves the way for future utilization of these hyperpolarized nitroimidazoles as molecular contrast agents for MRI visualization of tumors.
more »
« less
Nuclear Spin Hyperpolarization of NH 2 ‐ and CH 3 ‐Substituted Pyridine and Pyrimidine Moieties by SABRE
Abstract Hyperpolarization of N‐heterocycles with signal amplification by reversible exchange (SABRE) induces NMR sensitivity gains for biological molecules. Substitutions with functional groups, in particular in theortho‐position of the heterocycle, however, result in low polarization using a typical Ir catalyst with a bis‐mesityl N‐heterocyclic carbene ligand for SABRE, presumably due to steric hindrance. With the addition of allylamine or acetonitrile as coligands to the precatalyst chloro(1,5‐cyclooctadiene)[4,5‐dimethyl‐1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene] iridium, the1H signal enhancement increased in several substrates withorthoNH2substitutions. For example, for a proton in 2,4‐diaminopyrimidine, the enhancement factors increased from −7±1 to −210±20 with allylamine or to −160±10 with acetonitrile. CH3substituted molecules yielded maximum signal enhancements of −25±7 with acetonitrile addition, which is considerably less than the corresponding NH2substituted molecules, despite exhibiting similar steric size. With the more electron‐donating NH2substitution resulting in greater enhancement, it is concluded that steric hindrance is not the only dominant factor in determining the polarizability of the CH3substituted compounds. The addition of allylamine increased the signal enhancement for the 290 Da trimethoprim, a molecule with a 2,4‐diaminopyrimidine moiety serving as an antibacterial agent, to −70.
more »
« less
- Award ID(s):
- 1900406
- PAR ID:
- 10192748
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 21
- Issue:
- 19
- ISSN:
- 1439-4235
- Format(s):
- Medium: X Size: p. 2166-2172
- Size(s):
- p. 2166-2172
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a method to use long‐range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 792JCHand3JCHvalues collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE‐3D (computer‐assisted 3D structure elucidation) protocol. In addition to the most commonly used3JCHcoupling constants, the subset of 322JCHvalues alone showed an excellent degree of configuration selection. The study is mainly based on comparison of DFT‐calculated2,3JCHvalues with experimental ones, critical for the case of2JCH. But the configuration selection also works well using3JCHvalues predicted from a semi‐empirical Karplus‐based equation limited to H−C−C−C fragments. The robustness, shown using strychnine as a proof of concept, makes theJ‐based CASE‐3D analysis a viable option for the application in fields such as peptide and carbohydrate research, organic synthesis, natural‐product identification and analysis, as well as medicinal chemistry.more » « less
-
Abstract Main‐group element‐mediated C−H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3(1) (pyCDC=bis‐pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6‐di‐tert‐butylpyridine to enable C(sp3)−H bond breaking to generate the stiba‐methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2(2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C−H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1fashion, thereby weakening the C−H bond which can then be deprotonated by base in solution. Further, we show that1reacts with terminal alkynes in the presence of 2,6‐di‐tert‐butylpyridine to enable C(sp)−H bond breaking to form stiba‐alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2(3 a–f). Compound1shows excellent specificity for the activation of the terminal C(sp)−H bond even across alkynes with diverse functionality. The resulting stiba‐methylene nitrile and stiba‐alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.more » « less
-
null (Ed.)A series of bidentate N-heterocyclic carbene (NHC) iridium catalysts, [Ir(κC,N-NHC)H 2 L 2 ]BPh 4 , are proposed for SABRE hyperpolarization. The steric and electronic properties of the NHCs are used to tune substrate affinity and thereby SABRE efficiency. The sterically hindered substrates 2,4-diaminopyrimidine and trimethoprim yielded maximum proton NMR signal enhancements of ∼300-fold and ∼150-fold, respectively.more » « less
-
Abstract The role of ligands in rhodium‐ and iridium‐catalyzedParahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+and [Ir(NHC)(sub)3(H)2]+, and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron‐rich monoanionic bis(carbene) aryl pincer ligand,ArCCC (Ar=Dipp, 2,6‐diisopropyl or Mes, 2,4,6‐trimethylphenyl) on the cobalt‐catalyzed PHIP and PHIP‐IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (DippCCC)Co(N2) catalyst, which resulted in faster hydrogenation and up to 390‐fold1H signal enhancements, larger than that of the (MesCCC)Co‐py (py=pyridine) catalyst. Additionally, the synthesis of the (DippCCC)Rh(N2) complex is reported and applied towards the hydrogenation of ethyl acrylate withparahydrogen to generate modest signal enhancements of both1H and13C nuclei. Lastly, the generation of two (MesCCC)Ir complexes is presented and applied towards SABRE and PHIP‐IE chemistry to only yield small1H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.more » « less
An official website of the United States government
