Abstract The role of ligands in rhodium‐ and iridium‐catalyzedParahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+and [Ir(NHC)(sub)3(H)2]+, and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron‐rich monoanionic bis(carbene) aryl pincer ligand,ArCCC (Ar=Dipp, 2,6‐diisopropyl or Mes, 2,4,6‐trimethylphenyl) on the cobalt‐catalyzed PHIP and PHIP‐IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (DippCCC)Co(N2) catalyst, which resulted in faster hydrogenation and up to 390‐fold1H signal enhancements, larger than that of the (MesCCC)Co‐py (py=pyridine) catalyst. Additionally, the synthesis of the (DippCCC)Rh(N2) complex is reported and applied towards the hydrogenation of ethyl acrylate withparahydrogen to generate modest signal enhancements of both1H and13C nuclei. Lastly, the generation of two (MesCCC)Ir complexes is presented and applied towards SABRE and PHIP‐IE chemistry to only yield small1H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.
more »
« less
Tunable iridium catalyst designs with bidentate N-heterocyclic carbene ligands for SABRE hyperpolarization of sterically hindered substrates
A series of bidentate N-heterocyclic carbene (NHC) iridium catalysts, [Ir(κC,N-NHC)H 2 L 2 ]BPh 4 , are proposed for SABRE hyperpolarization. The steric and electronic properties of the NHCs are used to tune substrate affinity and thereby SABRE efficiency. The sterically hindered substrates 2,4-diaminopyrimidine and trimethoprim yielded maximum proton NMR signal enhancements of ∼300-fold and ∼150-fold, respectively.
more »
« less
- Award ID(s):
- 1900406
- PAR ID:
- 10237300
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 98
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 15466 to 15469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1 H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B 6 and caffeine. We also show 15 N-enhancements of ∼1000-fold and 19 F-enhancements of 30-fold.more » « less
-
The crystal structures of ligand precursor bis(imidazolium) salts 1,1′-methylenebis(3- tert -butylimidazolium) dibromide monohydrate, C 15 H 26 N 4 + ·2Br − ·H 2 O or [ t Bu NHC 2 Me][Br] 2 ·H 2 O, 1,1′-(ethane-1,2-diyl)bis(3- tert -butylimidazolium) dibromide dihydrate, C 16 H 28 N 4 + ·2Br − ·2H 2 O or [ t Bu NHC 2 Et][Br] 2 ·2H 2 O, 1,1′-methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate, C 25 H 30 N 4 2+ ·2Br − ·2H 2 O or [ Mes NHC 2 Me][Br] 2 ·2H 2 O, and 1,1′-(ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate, C 26 H 32 N 4 2+ ·2Br − ·4H 2 O or [ Mes NHC 2 Et][Br] 2 ·4H 2 O, are reported. At 293 K, [ t Bu NHC 2 Me][Br] 2 ·H 2 O crystallizes in the P 2 1 / c space group, while [ t Bu NHC 2 Et][Br] 2 ·2H 2 O crystallizes in the P 2 1 / n space group at 100 K. At 112 K, [ Mes NHC 2 Me][Br] 2 ·2H 2 O crystallizes in the orthorhombic space group Pccn while [ Mes NHC 2 Et][Br] 2 ·4H 2 O crystallizes in the P 2 1 / c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis(imidazolium) salts co-crystallize with one to four molecules of water.more » « less
-
Abstract A combined synthetic and theoretical investigation of N‐heterocyclic carbene (NHC) adducts of magnesium amidoboranes is presented, which involves a rare example of reversible migratory insertion within a normal valents‐block element. The reaction of (NHC)Mg(N(SiMe3)2)2(1) and dimethylamine borane yields the tris(amide) adduct (NHC−BN)Mg(NMe2BH3)(N(SiMe3)2) (2; NHC−BN = NHC−BH2NMe2). In addition to Me2N=BH2capture at theNHCC−Mg bond, mechanistic investigations suggest the likelihood of aminoborane migratory insertion from an RMg(NMe2BH2NMe2BH3) intermediate. To elucidate these processes, the carbene complexes (NHC)Mg(NMe2BH3)2(8) and (NHC)Mg(NMe2BH2NMe2BH3)2(9) were synthesized, and a dynamic migration of Me2N=BH2between Mg−N andNHCC−Mg bonds was observed in9. This unusual reversible migratory insertion is presumably induced by dissimilar charge localization in the−{NMe2BH2NMe2BH3} anion, as well as the capacity of NHCs to reversibly capture Me2N=BH2in the presence of Lewis acidic magnesium species.more » « less
-
Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.more » « less
An official website of the United States government

