skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Abstract. Nitrate is a critical ingredient for life in the ocean because, as the mostabundant form of fixed nitrogen in the ocean, it is an essential nutrientfor primary production. The availability of marine nitrate is principallydetermined by biological processes, each having a distinct influence on theN isotopic composition of nitrate (nitrate δ15N) – a propertythat informs much of our understanding of the marine N cycle as well asmarine ecology, fisheries, and past ocean conditions. However, the sparsespatial distribution of nitrate δ15N observations makes itdifficult to apply this useful property in global studies or to facilitaterobust model–data comparisons. Here, we use a compilation of publishednitrate δ15N measurements (n=12 277) and climatological mapsof physical and biogeochemical tracers to create a surface-to-seafloor,1∘ resolution map of nitrate δ15N using an ensembleof artificial neural networks (EANN). The strong correlation (R2>0.87) and small mean difference (<0.05 ‰) between EANN-estimated and observed nitrateδ15N indicate that the EANN provides a good estimate ofclimatological nitrate δ15N without a significant bias. Themagnitude of observation-model residuals is consistent with the magnitude of seasonal to interannual changes in observed nitrate δ15N that are notcaptured by our climatological model. The EANN provides a globally resolved map of mean nitrate δ15Nfor observational and modeling studies of marine biogeochemistry,paleoceanography, and marine ecology.  more » « less
Award ID(s):
1658392
PAR ID:
10192841
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
16
Issue:
13
ISSN:
1726-4189
Page Range / eLocation ID:
2617 to 2633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Moisander, Pia (Ed.)
    Abstract The availability of nitrogen (N) in ocean surface waters affects rates of photosynthesis and marine ecosystem structure. In spite of low dissolved inorganic N concentrations, export production in oligotrophic waters is comparable to more nutrient replete regions. Prior observations raise the possibility that di-nitrogen (N2) fixation supplies a significant fraction of N supporting export production in the Gulf of Mexico. In this study, geochemical tools were used to quantify the relative and absolute importance of both subsurface nitrate and N2 fixation as sources of new N fueling export production in the oligotrophic Gulf of Mexico in May 2017 and May 2018. Comparing the isotopic composition (“δ15N”) of nitrate with the δ15N of sinking particulate N collected during five sediment trap deployments each lasting two to four days indicates that N2 fixation is typically not detected and that the majority (≥80%) of export production is supported by subsurface nitrate. Moreover, no gradients in upper ocean dissolved organic N and suspended particulate N concentration and/or δ15N were found that would indicate significant N2 fixation fluxes accumulated in these pools, consistent with low Trichodesmium spp. abundance. Finally, comparing the δ15N of sinking particulate N captured within vs. below the euphotic zone indicates that during late spring regenerated N is low in δ15N compared to sinking N. 
    more » « less
  2. The tropical Pacific is one of the largest ocean regions on Earth where the trace element iron limits new primary production and therefore the efficiency of carbon export to the deep sea. Although there is a long history of marine biogeochemical research in the tropical Pacific, recent advancements using GEOTRACES key parameters such as iron and nitrate isotopes (nitrate δ15N and δ18O) make this a good time to review the current understanding of tropical Pacific nitrate dynamics—how both regional subsurface nitrate characteristics and surface ocean nitrate utilization change with time. While this article provides a comprehensive overview of the biological, chemical, and physical processes shaping equatorial Pacific subsurface-to-surface nutrients, it principally explores the findings from the first nitrate isotope time series in iron-limited high nutrient, low chlorophyll waters. Results indicate that the preferential recycling of bioavailable iron within the euphotic zone is required to explain even the lowest observed nitrate utilization in the eastern equatorial Pacific (EEP). Furthermore, because seasonal-to-interannual nitrate utilization variability in the EEP cannot be driven by changes in iron supply, this work argues that iron recycling (and therefore bioavailable iron) is modulated by upwelling rate changes, creating a predicted and recently observed spectrum of iron limitation in the iron-limited EEP surface waters. In other words, upper ocean physics overwhelmingly dominates seasonal-to-interannual nitrate utilization in the iron-​limited EEP. This new understanding of nitrate utilization in iron-limited waters helps to explain long-term changes in past equatorial Pacific nitrate utilization obtained via sedimentary proxy records and potentially complicates the efficacy of future iron fertilization of the equatorial Pacific. 
    more » « less
  3. Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins9 diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 μg·g_1) than adults (0.49 ± 0.23 μg·g_1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future. 
    more » « less
  4. The nitrogen (N) isotope composition (δ15N) of cold-water corals is a promising proxy for reconstructing past ocean N cycling, as a strong correlation was found between the δ15N of the organic nitrogen preserved in coral skeletons and the δ15N of particulate organic matter exported from the surface ocean. However, a large offset of 8 ‰–9 ‰ between the δ15N recorded by the coral and that of exported particulate organic matter remains unexplained. The 8 ‰–9 ‰ offset may signal a higher trophic level of coral dietary sources, an unusually large trophic isotope effect or a biosynthetic δ15N offset between the coral's soft tissue and skeletal organic matter, or some combinations of these factors. To understand the origin of the offset and further validate the proxy, we investigated the trophic ecology of the asymbiotic scleractinian cold-water coral Balanophyllia elegans, both in a laboratory setting and in its natural habitat. A long-term incubation experiment of B. elegans fed on an isotopically controlled diet yielded a canonical trophic isotope effect of 3.0 ± 0.1 ‰ between coral soft tissue and the Artemia prey. The trophic isotope effect was not detectably influenced by sustained food limitation. A long N turnover of coral soft tissue, expressed as an e-folding time, of 291 ± 15 d in the well-fed incubations indicates that coral skeleton δ15N is not likely to track subannual (e.g., seasonal) variability in diet δ15N. Specimens of B. elegans from the subtidal zone near San Juan Channel (WA, USA) revealed a modest difference of 1.2 ± 0.6 ‰ between soft tissue and skeletal δ15N. The δ15N of the coral soft tissue was 12.0 ± 0.6 ‰, which was ∼6 ‰ higher than that of suspended organic material that was comprised dominantly of phytoplankton – suggesting that phytoplankton is not the primary component of B. elegans' diet. An analysis of size-fractionated net tow material suggests that B. elegans fed predominantly on a size class of zooplankton ≥500 µm, implicating a two-level trophic transfer between phytoplankton material and coral tissue. These results point to a feeding strategy that may result in an influence of the regional food web structure on the cold-water coral δ15N. This factor should be taken into consideration when applying the proxy to paleo-oceanographic studies of ocean N cycling. 
    more » « less
  5. Abstract. Comprehensive evaluation of the effects of post-depositional processing is a prerequisite for appropriately interpreting ice-core records of nitrate concentration and isotopes. In this study, we developed an inverse model that uses archived snow/ice-core nitrate signals to reconstruct primary nitrate flux (i.e., the deposition flux of nitrate to surface snow that originates from long-range transport or stratospheric input) and its isotopes (δ15N and Δ17O). The model was then applied to two polar sites, Summit, Greenland, and Dome C, Antarctica, using measured snowpack nitrate concentration and isotope profiles in the top few meters. At Summit, the model successfully reproduced the observed atmospheric δ15N(NO3-) and Δ17O(NO3-) and their seasonality. The model was also able to reasonably reproduce the observed snowpack nitrate profiles at Dome C as well as the skin layer and atmospheric δ15N(NO3-) and Δ17O(NO3-) at the annual scale. The calculated Fpri at Summit was 6.9 × 10−6 kgN m2 a−1, and the calculated Δ17O(NO3-) of Fpri is consistent with atmospheric observations in the Northern Hemisphere. However, the calculated δ15N(NO3-) of Fpri displays an opposite seasonal pattern to atmospheric observations in the northern mid-latitudes, but it is consistent with observations in two Arctic coastal sites. The calculated Fpri at Dome C varies from 1.5 to 2.2 × 10−6 kgN m−2 a−1, with δ15N(NO3-) of Fpri varying from 6.2 ‰ to 29.3 ‰ and Δ17O(NO3-) of Fpri varying from 48.8 ‰ to 52.6 ‰. The calculated Fpri at Dome C is close to the previous estimated stratospheric denitrification flux in Antarctica, and the high δ15N(NO3-) and Δ17O(NO3-) of Fpri at Dome C also point towards the dominant role of stratospheric origin of primary nitrate to Dome C. 
    more » « less