skip to main content

Title: The Effect of a Foveated Field-of-view Restrictor on VR Sickness
Virtual reality sickness typically results from visual-vestibular conflict. Because self-motion from optical flow is driven most strongly by motion at the periphery of the retina, reducing the user’s field-of-view (FOV) during locomotion has proven to be an effective strategy to minimize visual vestibular conflict and VR sickness. Current FOV restrictor implementations reduce the user’s FOV by rendering a restrictor whose center is fixed at the center of the head mounted display (HMD), which is effective when the user’s eye gaze is aligned with head gaze. However, during eccentric eye gaze, users may look at the FOV restrictor itself, exposing them to peripheral optical flow which could lead to increased VR sickness. To address these limitations, we develop a foveated FOV restrictor and we explore the effect of dynamically moving the center of the FOV restrictor according to the user’s eye gaze position. We conducted a user study (n=22) where each participant uses a foveated FOV restrictor and a head-fixed FOV restrictor while navigating a virtual environment. We found no statistically significant difference in VR sickness measures or noticeability between both restrictors. However, there was a significant difference in eye gaze behavior, as measured by eye gaze dispersion, with the foveated FOV restrictor allowing participants to have a wider visual scan area compared to the head-fixed FOV restrictor, which confined their eye gaze to the center of the FOV.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Page Range / eLocation ID:
645 to 652
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex. 
    more » « less
  2. Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to a significant increase. We discuss the results and potential explanations of our findings. 
    more » « less
  3. In eye-tracked augmented and virtual reality (AR/VR), instantaneous and accurate hands-free selection of virtual elements is still a significant challenge. Though other methods that involve gaze-coupled head movements or hovering can improve selection times in comparison to methods like gaze-dwell, they are either not instantaneous or have difficulty ensuring that the user’s selection is deliberate. In this paper, we present EyeShadows, an eye gaze-based selection system that takes advantage of peripheral copies (shadows) of items that allow for quick selection and manipulation of an object or corresponding menus. This method is compatible with a variety of different selection tasks and controllable items, avoids the Midas touch problem, does not clutter the virtual environment, and is context sensitive. We have implemented and refined this selection tool for VR and AR, including testing with optical and video see-through (OST/VST) displays. Moreover, we demonstrate that this method can be used for a wide range of AR and VR applications, including manipulation of sliders or analog elements. We test its performance in VR against three other selection techniques, including dwell (baseline), an inertial reticle, and head-coupled selection. Results showed that selection with EyeShadows was significantly faster than dwell (baseline), outperforming in the select and search and select tasks by 29.8% and 15.7%, respectively, though error rates varied between tasks. 
    more » « less
  4. This literature review examines the existing research into cybersickness reduction with regards to head mounted display use. Cybersickness refers to a collection of negative symptoms sometimes experienced as the result of being immersed in a virtual environment, such as nausea, dizziness, or eye strain. These symptoms can prevent individuals from utilizing virtual reality (VR) technologies, so discovering new methods of reducing them is critical. Our objective in this literature review is to provide a better picture of what cybersickness reduction techniques exist, the quantity of research demonstrating their effectiveness, and the virtual scenes testing has taken place in. This will help to direct researches towards promising avenues, and illuminate gaps in the literature. Following the preferred reporting items for systematic reviews and meta-analyses statement, we obtained a batch of 1,055 papers through the use of software aids. We selected 88 papers that examine potential cybersickness reduction approaches. Our acceptance criteria required that papers examined malleable conditions that could be conceivably modified for everyday use, examined techniques in conjunction with head mounted displays, and compared cybersickness levels between two or more user conditions. These papers were sorted into categories based on their general approach to combating cybersickness, and labeled based on the presence of statistically significant results, the use of virtual vehicles, the level of visual realism, and the virtual scene contents used in evaluation of their effectiveness. In doing this we have created a snapshot of the literature to date so that researchers may better understand what approaches are being researched, and the types of virtual experiences used in their evaluation. Keywords: Virtual reality cybersickness Simulator Sickness Visually induced motion sickness reduction Systematic review Head mounted display. 
    more » « less
  5. VR sickness is a major concern for many users as VR continues its expansion towards widespread everyday use. VR sickness is thought to arise, at least in part, due to the user’s intolerance of conflict between the visually simulated self-motion and actual physical movement. Many mitigation strategies involve consistently modifying the visual stimulus to reduce its impact on the user, but this individualized approach can have drawbacks in terms of complexity of implementation and non-uniformity of user experience. This study presents a novel alternative approach that involves training the user to better tolerate the adverse stimulus by tapping into natural adaptive perceptual mechanisms. In this study, we recruited users with limited VR experience that reported susceptibility to VR sickness. Baseline sickness was measured as participants navigated a rich and naturalistic visual environment. Then, on successive days, participants were exposed to optic flow in a more abstract visual environment, and strength of the optic flow was successively increased by increasing the visual contrast of the scene, because strength of optic flow and the resulting vection are thought to be major causes of VR sickness. Sickness measures decreased on successive days, indicating that adaptation was successful. On the final day, participants were again exposed to the rich and naturalistic visual environment, and the adaptation was maintained, demonstrating that it is possible for adaptation to transfer from more abstract to richer and more naturalistic environments. These results demonstrate that gradual adaptation to increasing optic flow strength in well-controlled, abstract environments allows users to gradually reduce their susceptibility to sickness, thereby increasing VR accessibility for those prone to sickness. 
    more » « less