skip to main content

Title: The Effect of a Foveated Field-of-view Restrictor on VR Sickness
Virtual reality sickness typically results from visual-vestibular conflict. Because self-motion from optical flow is driven most strongly by motion at the periphery of the retina, reducing the user’s field-of-view (FOV) during locomotion has proven to be an effective strategy to minimize visual vestibular conflict and VR sickness. Current FOV restrictor implementations reduce the user’s FOV by rendering a restrictor whose center is fixed at the center of the head mounted display (HMD), which is effective when the user’s eye gaze is aligned with head gaze. However, during eccentric eye gaze, users may look at the FOV restrictor itself, exposing them to peripheral optical flow which could lead to increased VR sickness. To address these limitations, we develop a foveated FOV restrictor and we explore the effect of dynamically moving the center of the FOV restrictor according to the user’s eye gaze position. We conducted a user study (n=22) where each participant uses a foveated FOV restrictor and a head-fixed FOV restrictor while navigating a virtual environment. We found no statistically significant difference in VR sickness measures or noticeability between both restrictors. However, there was a significant difference in eye gaze behavior, as measured by eye gaze dispersion, with the foveated more » FOV restrictor allowing participants to have a wider visual scan area compared to the head-fixed FOV restrictor, which confined their eye gaze to the center of the FOV. « less
Authors:
; ; ;
Award ID(s):
1911041
Publication Date:
NSF-PAR ID:
10193017
Journal Name:
IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Page Range or eLocation-ID:
645 to 652
Sponsoring Org:
National Science Foundation
More Like this
  1. Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex.
  2. Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to amore »significant increase. We discuss the results and potential explanations of our findings.« less
  3. VR sickness is a major concern for many users as VR continues its expansion towards widespread everyday use. VR sickness is thought to arise, at least in part, due to the user’s intolerance of conflict between the visually simulated self-motion and actual physical movement. Many mitigation strategies involve consistently modifying the visual stimulus to reduce its impact on the user, but this individualized approach can have drawbacks in terms of complexity of implementation and non-uniformity of user experience. This study presents a novel alternative approach that involves training the user to better tolerate the adverse stimulus by tapping into natural adaptive perceptual mechanisms. In this study, we recruited users with limited VR experience that reported susceptibility to VR sickness. Baseline sickness was measured as participants navigated a rich and naturalistic visual environment. Then, on successive days, participants were exposed to optic flow in a more abstract visual environment, and strength of the optic flow was successively increased by increasing the visual contrast of the scene, because strength of optic flow and the resulting vection are thought to be major causes of VR sickness. Sickness measures decreased on successive days, indicating that adaptation was successful. On the final day, participants weremore »again exposed to the rich and naturalistic visual environment, and the adaptation was maintained, demonstrating that it is possible for adaptation to transfer from more abstract to richer and more naturalistic environments. These results demonstrate that gradual adaptation to increasing optic flow strength in well-controlled, abstract environments allows users to gradually reduce their susceptibility to sickness, thereby increasing VR accessibility for those prone to sickness.« less
  4. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS inmore »spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts.« less
  5. Multi-modal bio-sensing has recently been used as effective research tools in affective computing, autism, clinical disorders, and virtual reality among other areas. However, none of the existing bio-sensing systems support multi-modality in a wearable manner outside well-controlled laboratory environments with research-grade measurements. This work attempts to bridge this gap by developing a wearable multi-modal biosensing system capable of collecting, synchronizing, recording and transmitting data from multiple bio-sensors: PPG, EEG, eye-gaze headset, body motion capture, GSR, etc. while also providing task modulation features including visual-stimulus tagging. This study describes the development and integration of the various components of our system. We evaluate the developed sensors by comparing their measurements to those obtained by a standard research-grade bio-sensors. We first evaluate different sensor modalities of our headset, namely earlobe-based PPG module with motion-noise canceling for ECG during heart-beat calculation. We also compare the steady-state visually evoked potentials (SSVEP) measured by our shielded dry EEG sensors with the potentials obtained by commercially available dry EEG sensors. We also investigate the effect of head movements on the accuracy and precision of our wearable eyegaze system. Furthermore, we carry out two practical tasks to demonstrate the applications of using multiple sensor modalities for exploring previouslymore »unanswerable questions in bio-sensing. Specifically, utilizing bio-sensing we show which strategy works best for playing Where is Waldo? visual-search game, changes in EEG corresponding to true versus false target fixations in this game, and predicting the loss/draw/win states through biosensing modalities while learning their limitations in a Rock-Paper-Scissors game.« less