skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cybersickness Abatement from Repeated Exposure to VR with Reduced Discomfort
Cybersickness, or sickness induced by virtual reality (VR), negatively impacts the enjoyment and adoption of the technology. One method that has been used to reduce sickness is repeated exposure to VR, herein Cybersickness Abatement from Repeated Exposure (CARE). However, high sickness levels during repeated exposure may discourage some users from returning. Field of view (FOV) restriction reduces cybersickness by minimizing visual motion in the periphery, but also negatively affects the user's visual experience. This study explored whether CARE that occurs with FOV restriction generalizes to a full FOV experience. Participants played a VR game for up to 20 minutes. Those in the Repeated Exposure Condition played the same VR game on four separate days, experiencing FOV restriction during the first three days and no FOV restriction on the fourth day. Results indicated significant CARE with FOV restriction (Days 1-3). Further, cybersickness on Day 4, without FOV restriction, was significantly lower than that of participants in the Single Exposure Condition, who experienced the game without FOV restriction only on one day. The current findings show that significant CARE can occur while experiencing minimal cybersickness. Results are considered in the context of multiple theoretical explanations for CARE, including sensory rearrangement, adaptation, habituation, and postural control.  more » « less
Award ID(s):
2309990
PAR ID:
10591600
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 12
Subject(s) / Keyword(s):
Virtual Reality Cybersickness Repeated Exposure Field of View Restriction Adaptation Habituation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple tools are available to reduce cybersickness (sickness caused by virtual reality), but past research has not investigated the combined effects of multiple mitigation tools. Field of view (FOV) restriction limits peripheral vision during self-motion, and ample evidence supports its effectiveness for reducing cybersickness. Snap turning involves discrete rotations of the user's perspective without presenting intermediate views, although reports on its effectiveness at reducing cybersickness are limited and equivocal. Both mitigation tools reduce the visual motion that can cause cybersickness. The current study (N = 201) investigated the individual and combined effects of FOV restriction and snap turning on cybersickness when playing a consumer virtual reality game. FOV restriction and snap turning in isolation reduced cybersickness compared to a control condition without mitigation tools. Yet, the combination of FOV restriction and snap turning did not further reduce cybersickness beyond the individual tools in isolation, and in some cases the combination of tools led to cybersickness similar to that in the no mitigation control. These results indicate that caution is warranted when combining multiple cybersickness mitigation tools, which can interact in unexpected ways. 
    more » « less
  2. Cybersickness – discomfort caused by virtual reality (VR) – remains a significant problem that negatively affects the user experience. Research on individual differences in cybersickness has typically focused on overall sickness intensity, but a detailed understanding should include whether individuals differ in the relative intensity of cybersickness symptoms. This study used latent profile analysis (LPA) to explore whether there exist groups of individuals who experience common patterns of cybersickness symptoms. Participants played a VR game for up to 20 min. LPA indicated three groups with low, medium, and high overall cybersickness. Further, there were similarities and differences in relative patterns of nausea, disorientation, and oculomotor symptoms between groups. Disorientation was lower than nausea and oculomotor symptoms for all three groups. Nausea and oculomotor were experienced at similar levels within the high and low sickness groups, but the medium sickness group experienced more nausea than oculomotor. Characteristics of group members varied across groups, including gender, virtual reality experience, video game experience, and history of motion sickness. These findings identify distinct individual experiences in symptomology that go beyond overall sickness intensity, which could enable future interventions that target certain groups of individuals and specific symptoms. 
    more » « less
  3. null (Ed.)
    Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex. 
    more » « less
  4. Virtual reality sickness typically results from visual-vestibular conflict. Because self-motion from optical flow is driven most strongly by motion at the periphery of the retina, reducing the user’s field-of-view (FOV) during locomotion has proven to be an effective strategy to minimize visual vestibular conflict and VR sickness. Current FOV restrictor implementations reduce the user’s FOV by rendering a restrictor whose center is fixed at the center of the head mounted display (HMD), which is effective when the user’s eye gaze is aligned with head gaze. However, during eccentric eye gaze, users may look at the FOV restrictor itself, exposing them to peripheral optical flow which could lead to increased VR sickness. To address these limitations, we develop a foveated FOV restrictor and we explore the effect of dynamically moving the center of the FOV restrictor according to the user’s eye gaze position. We conducted a user study (n=22) where each participant uses a foveated FOV restrictor and a head-fixed FOV restrictor while navigating a virtual environment. We found no statistically significant difference in VR sickness measures or noticeability between both restrictors. However, there was a significant difference in eye gaze behavior, as measured by eye gaze dispersion, with the foveated FOV restrictor allowing participants to have a wider visual scan area compared to the head-fixed FOV restrictor, which confined their eye gaze to the center of the FOV. 
    more » « less
  5. VR sickness is a major concern for many users as VR continues its expansion towards widespread everyday use. VR sickness is thought to arise, at least in part, due to the user’s intolerance of conflict between the visually simulated self-motion and actual physical movement. Many mitigation strategies involve consistently modifying the visual stimulus to reduce its impact on the user, but this individualized approach can have drawbacks in terms of complexity of implementation and non-uniformity of user experience. This study presents a novel alternative approach that involves training the user to better tolerate the adverse stimulus by tapping into natural adaptive perceptual mechanisms. In this study, we recruited users with limited VR experience that reported susceptibility to VR sickness. Baseline sickness was measured as participants navigated a rich and naturalistic visual environment. Then, on successive days, participants were exposed to optic flow in a more abstract visual environment, and strength of the optic flow was successively increased by increasing the visual contrast of the scene, because strength of optic flow and the resulting vection are thought to be major causes of VR sickness. Sickness measures decreased on successive days, indicating that adaptation was successful. On the final day, participants were again exposed to the rich and naturalistic visual environment, and the adaptation was maintained, demonstrating that it is possible for adaptation to transfer from more abstract to richer and more naturalistic environments. These results demonstrate that gradual adaptation to increasing optic flow strength in well-controlled, abstract environments allows users to gradually reduce their susceptibility to sickness, thereby increasing VR accessibility for those prone to sickness. 
    more » « less