skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nucleosynthesis of "Light" Heavy Nuclei in Neutrino-driven Winds. Role of ( α,n ) reactions
Neutrino-driven winds following core collapse supernovae have been proposed as a suitable site where the so-called light heavy elements (between Sr to Ag) can be synthetized. For moderately neutron-rich winds, ( α,n ) reactions play a critical role in the weak r process, becoming the main mechanism to drive nuclear matter towards heavier elements. In this paper we summarize the sensitivity of network-calculated abundances to the astrophysical conditions, and to uncertainties in the ( α,n ) reaction rates. A list of few ( α,n ) reactions were identified to dominate the uncertainty in the calculated elemental abundances. Measurements of these reactions will allow to identify the astrophysical conditions of the weak r process by comparing calculated/observed abundances in r-limited stars.  more » « less
Award ID(s):
1927130
PAR ID:
10193272
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freeman, S.; Lederer-Woods, C.; Manna, A.; Mengoni, A. (Ed.)
    The r-process has been shown to be robust in reproducing the abundance distributions of heavy elements, such as europium, seen in ultra-metal poor stars. In contrast, observations of elements 26 < Z < 47 display overabundances relative to r-process model predictions. A proposed additional source of early nucleosynthesis is the weak r-process in neutrino-driven winds of core-collapse supernovae. It has been shown that in this site ( α ,n) reactions are both crucial to nucleosynthesis and the main source of uncertainty in model-based abundance predictions. Aiming to improve the certainty of nucleosynthesis predictions, the cross section of the important reaction 86 Kr( α ,n) 89 Sr has been measured at an energy relevant to the weak r-process. This experiment was conducted in inverse kinematics at TRIUMF with the EMMA recoil mass spectrometer and the TIGRESS gamma-ray spectrometer. A novel type of solid helium target was used. 
    more » « less
  2. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less
  3. Abstract The elemental abundances between strontium and silver (Z= 38–47) observed in the atmospheres of very metal-poor stars in the Galaxy may contain the fingerprint of the weakr-process andνp-process occurring in early core-collapse supernovae explosions. In this work, we combine various astrophysical conditions based on a steady-state model to cover the richness of the supernova ejecta in terms of entropy, expansion timescale, and electron fraction. The calculated abundances based on different combinations of conditions are compared with stellar observations, with the aim of constraining supernova ejecta conditions. We find that some conditions of the neutrino-driven outflows consistently reproduce the observed abundances of our sample. In addition, from the successful combinations, the neutron-rich trajectories better reproduce the observed abundances of Sr–Zr (Z= 38–40), while the proton-rich ones, Mo–Pd (Z= 42–47). 
    more » « less
  4. Context.In recent years, theR-Process Alliance (RPA) has conducted a successful search for stars that are enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars that are strongly enriched in lightr-process elements, such as Sr, Y, and Zr. These so-called limited-rstars were investigated to explore the astrophysical production site(s) of these elements. Aims.We investigate the possible formation sites for light neutron-capture elements by deriving detailed abundances for neutron-capture elements from high-resolution spectra with a high signal-to-noise ratio of three limited-rstars. Methods.We conducted a kinematic analysis and a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars. Furthermore, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-rstars from the literature. Results.We found that the abundance pattern of neutron-capture elements of limited-rstars behaves differently depending on their [Ba/Eu] ratios, and we suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that theXLaof limited-rstars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-rXLaand that ofr-I andr-II stars. Finally, we found that unliker-I andr-II stars, the current sample of limited-rstars is largely born in the Galaxy and is not accreted. 
    more » « less
  5. Abstract Heavy elements are synthesized by ther-process in neutron star mergers and potentially in rare supernovae linked to strong magnetic fields. Expensive hydrodynamic simulations of these extreme environments are usually postprocessed to calculate the nucleosynthesis. In contrast, here we follow a site-independent approach based on three key parameters: electron fraction, entropy, and expansion timescale. Our model reproduces the results based on hydrodynamic simulations. Moreover, the 120,000 astrophysical conditions analyzed allow us to systematically and generally explore the astrophysical conditions of ther-process, also beyond those found in current simulations. Our results show that a wide range of conditions produce very similar abundance patterns explaining the observed robustness of ther-process between the second and third peak. Furthermore, we cannot find a single condition that produces the full solarr-process pattern from first to third peak. Instead, a superposition of at least two or three conditions or components is required to reproduce the typicalr-process pattern as observed in the solar system and very old stars. The different final abundances are grouped into eight nucleosynthesis clusters, which can be used to select representative conditions for comparisons to observations and investigations of the nuclear physics input. 
    more » « less