skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Constraining Nucleosynthesis in Neutrino-driven Winds: Observations, Simulations, and Nuclear Physics
Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars.  more » « less
Award ID(s):
2209429 1927130
NSF-PAR ID:
10432862
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neutrino-driven winds following core collapse supernovae have been proposed as a suitable site where the so-called light heavy elements (between Sr to Ag) can be synthetized. For moderately neutron-rich winds, ( α,n ) reactions play a critical role in the weak r process, becoming the main mechanism to drive nuclear matter towards heavier elements. In this paper we summarize the sensitivity of network-calculated abundances to the astrophysical conditions, and to uncertainties in the ( α,n ) reaction rates. A list of few ( α,n ) reactions were identified to dominate the uncertainty in the calculated elemental abundances. Measurements of these reactions will allow to identify the astrophysical conditions of the weak r process by comparing calculated/observed abundances in r-limited stars. 
    more » « less
  2. Kawano, T. (Ed.)
    We review recent work examining the influence of fission in rapid neutron capture ( r -process) nucleosynthesis which can take place in astrophysical environments. We briefly discuss the impact of uncertain fission barriers and fission rates on the population of heavy actinide species. We demonstrate the influence of the fission fragment distributions for neutron-rich nuclei and discuss currently available treatments, including recent macroscopic-microscopic calculations. We conclude by comparing our nucleosynthesis results directly with stellar data for metal-poor stars rich in r -process elements to consider whether fission plays a role in the so-called ‘universality’ of r -process abundances observed from star to star. 
    more » « less
  3. Freeman, S. ; Lederer-Woods, C. ; Manna, A. ; Mengoni, A. (Ed.)
    The r-process has been shown to be robust in reproducing the abundance distributions of heavy elements, such as europium, seen in ultra-metal poor stars. In contrast, observations of elements 26 < Z < 47 display overabundances relative to r-process model predictions. A proposed additional source of early nucleosynthesis is the weak r-process in neutrino-driven winds of core-collapse supernovae. It has been shown that in this site ( α ,n) reactions are both crucial to nucleosynthesis and the main source of uncertainty in model-based abundance predictions. Aiming to improve the certainty of nucleosynthesis predictions, the cross section of the important reaction 86 Kr( α ,n) 89 Sr has been measured at an energy relevant to the weak r-process. This experiment was conducted in inverse kinematics at TRIUMF with the EMMA recoil mass spectrometer and the TIGRESS gamma-ray spectrometer. A novel type of solid helium target was used. 
    more » « less
  4. ABSTRACT

    We study the nucleosynthesis products in neutrino-driven winds from rapidly rotating, highly magnetized and misaligned protomagnetars using the nuclear reaction network SkyNet. We adopt a semi-analytic parametrized model for the protomagnetar and systematically study the capabilities of its neutrino-driven wind for synthesizing nuclei and eventually producing ultra-high energy cosmic rays (UHECRs). We find that for neutron-rich outflows (Ye < 0.5), synthesis of heavy elements ($\overline{A}\sim 20-65$) is possible during the first $\sim 10\, {\rm s}$ of the outflow, but these nuclei are subjected to composition-altering photodisintegration during the epoch of particle acceleration at the dissipation radii. However, after the first $\sim 10\, {\rm s}$ of the outflow, nucleosynthesis reaches lighter elements ($\overline{A}\sim 10-50$) that are not subjected to subsequent photodisintegration. For proton-rich (Ye ≥ 0.5) outflows, synthesis is more limited ($\overline{A}\sim 4-15$). These suggest that while protomagnetars typically do not synthesize nuclei heavier than second r-process peak elements, they are intriguing sources of intermediate/heavy mass UHECRs. For all configurations, the most rapidly rotating protomagnetars are more conducive for nucleosynthesis with a weaker dependence on the magnetic field strength.

     
    more » « less
  5. Understanding the origin of the elements has been a decades-long pursuit, with many open questions remaining. Old stars found in the Milky Way and its dwarf satellite galaxies can provide answers because they preserve clean element abundance patterns of the nucleosynthesis processes that operated some 13 billion years ago, enabling reconstruction of the chemical evolution of the elements. This review focuses on the astrophysical signatures of heavy neutron-capture elements made in the s-, i-, and r-processes found in old stars. A highlight is the recently discovered r-process galaxy Reticulum II, which was enriched by a neutron star merger. These results show that old stars in dwarf galaxies provide a novel means to constrain the astrophysical site of the r-process, ushering in much-needed progress on this major outstanding question. This nuclear astrophysics research complements the many experimental and theoretical nuclear physics efforts into heavy-element formation, and also aligns with results on the gravitational-wave signature of neutron star mergers. 
    more » « less