skip to main content


Title: Review of uncertainties in the cosmic supernova relic neutrino background
We review the computation of and associated uncertainties in the current understanding of the relic neutrino background due to core-collapse supernovae, black hole formation and neutron star merger events. We consider the current status of uncertainties due to the nuclear equation of state (EoS), the progenitor masses, the source supernova neutrino spectrum, the cosmological star formation rate, the stellar initial mass function, neutrino oscillations, and neutrino self-interactions. We summarize the current viability of future neutrino detectors to distinguish the nuclear EoS and the temperature of supernova neutrinos via the detected relic supernova neutrino spectrum.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10193277
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Modern Physics Letters A
Volume:
35
Issue:
25
ISSN:
0217-7323
Page Range / eLocation ID:
2030011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The hadron-quark phase transition in quantum chromodynamics has been suggested as an alternative explosion mechanism for core-collapse supernovae. We study the impact of three different hadron-quark equations of state (EoS) with first-order (DD2F_SF, STOS-B145) and second-order (CMF) phase transitions on supernova dynamics by performing 97 simulations for solar- and zero-metallicity progenitors in the range of $14\tt {-}100\, \text{M}_\odot$. We find explosions only for two low-compactness models (14 and $16\, \text{M}_\odot$) with the DD2F_SF EoS, both with low explosion energies of ${\sim }10^{50}\, \mathrm{erg}$. These weak explosions are characterized by a neutrino signal with several minibursts in the explosion phase due to complex reverse shock dynamics, in addition to the typical second neutrino burst for phase-transition-driven explosions. The nucleosynthesis shows significant overproduction of nuclei such as 90Zr for the $14\hbox{-} \text{M}_\odot$ zero-metallicity model and 94Zr for the $16\hbox{-}\text{M}_\odot$ solar-metallicity model, but the overproduction factors are not large enough to place constraints on the occurrence of such explosions. Several other low-compactness models using the DD2F_SF EoS and two high-compactness models using the STOS EoS end up as failed explosions and emit a second neutrino burst. For the CMF EoS, the phase transition never leads to a second bounce and explosion. For all three EoS, inverted convection occurs deep in the core of the protocompact star due to anomalous behaviour of thermodynamic derivatives in the mixed phase, which heats the core to entropies up to 4kB/baryon and may have a distinctive gravitational-wave signature, also for a second-order phase transition.

     
    more » « less
  2. Abstract

    Binary neutron star mergers (NSMs) have been confirmed as one source of the heaviest observable elements made by the rapid neutron-capture (r-) process. However, modeling NSM outflows—from the total ejecta masses to their elemental yields—depends on the unknown nuclear equation of state (EOS) that governs neutron star structure. In this work, we derive a phenomenological EOS by assuming that NSMs are the dominant sources of the heavy element material in metal-poor stars withr-process abundance patterns. We start with a population synthesis model to obtain a population of merging neutron star binaries and calculate their EOS-dependent elemental yields. Under the assumption that these mergers were responsible for the majority ofr-process elements in the metal-poor stars, we find parameters representing the EOS for which the theoretical NSM yields reproduce the derived abundances from observations of metal-poor stars. For our proof-of-concept assumptions, we find an EOS that is slightly softer than, but still in agreement with, current constraints, e.g., by the Neutron Star Interior Composition Explorer, withR1.4= 12.25 ± 0.03 km andMTOV= 2.17 ± 0.03M(statistical uncertainties, neglecting modeling systematics).

     
    more » « less
  3. Abstract Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of the superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method which relies on certain theoretical assumptions and simplifications about the uncertainties. It first infers the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and a path towards circumventing the need for theoretical assumptions to infer physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS. 
    more » « less
  4. The neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector. 
    more » « less
  5. Abstract

    Understanding how matter behaves at the highest densities and temperatures is a major open problem in both nuclear physics and relativistic astrophysics. Our understanding of such behavior is often encapsulated in the so-called high-temperature nuclear equation of state (EOS), which influences compact binary mergers, core-collapse supernovae, and other phenomena. Our focus is on the type (either black hole or neutron star) and mass of the remnant of the core collapse of a massive star. For each six candidates of equations of state, we use a very large suite of spherically symmetric supernova models to generate a sample of synthetic populations of such remnants. We then compare these synthetic populations to the observed remnant population. Our study provides a novel constraint on the high-temperature nuclear EOS and describes which EOS candidates are more or less favored by an information-theoretic metric.

     
    more » « less