skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data
With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets.  more » « less
Award ID(s):
1910197 1633608
PAR ID:
10193356
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Page Range / eLocation ID:
567 to 577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance 
    more » « less
  2. High-performance computing (HPC) systems that run scientific simulations of significance produce a large amount of data during runtime. Transferring or storing such big datasets causes a severe I/O bottleneck and a considerable storage burden. Applying compression techniques, particularly lossy compressors, can reduce the size of the data and mitigate such overheads. Unlike lossless compression algorithms, error-controlled lossy compressors could significantly reduce the data size while respecting the user-defined error bound. DCTZ is one of the transform-based lossy compressors with a highly efficient encoding and purpose-built error control mechanism that accomplishes high compression ratios with high data fidelity. However, since DCTZ quantizes the DCT coefficients in the frequency domain, it may only partially control the relative error bound defined by the user. In this paper, we aim to improve the compression quality of DCTZ. Specifically, we propose a preconditioning method based on level offsetting and scaling to control the magnitude of input of the DCTZ framework, thereby enforcing stricter error bounds. We evaluate the performance of our method in terms of compression ratio and rate distortion with real-world HPC datasets. Our experimental result shows that our method can achieve a higher compression ratio than other state-of-the-art lossy compressors with a tighter error bound while precisely guaranteeing the user-defined error bound. 
    more » « less
  3. Scientific simulations running on HPC facilities generate massive amount of data, putting significant pressure onto supercomputers’ storage capacity and network bandwidth. To alleviate this problem, there has been a rich body of work on reducing data volumes via error-controlled lossy compression. However, fixed-ratio compression is not very well-supported, not allowing users to appropriately allocate memory/storage space or know the data transfer time over the network in advance. To address this problem, recent ratio-controlled frameworks, such as FXRZ, have incorporated methods to predict required error bound settings to reach a user-specified compression ratio. However, these approaches fail to achieve fixed-ratio compression in an accurate, efficient and scalable fashion on diverse datasets and compression algorithms. This work proposes an efficient, scalable, ratio-controlled lossy compression framework (CAROL). At the core of CAROL are four optimization strategies that allow for improving the prediction accuracy and runtime efficiency over state-of-the-art solutions. First, CAROL uses surrogate-based compression ratio estimation to generate training data. Second, it includes a novel calibration method to improve prediction accuracy across a variety of compressors. Third, it leverages Bayesian optimization to allow for efficient training and incremental model refinement. Forth, it uses GPU acceleration to speed up prediction. We evaluate CAROL on four compression algorithms and six scientific datasets. On average, when compared to the state-of-the-art FXRZ framework, CAROL achieves 4 × speedup in setup time and 36 × speedup in inference time, while maintaining less than 1% difference in estimation accuracy. 
    more » « less
  4. With ever-increasing execution scale of the high performance computing (HPC) applications, vast amount of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications, because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM. 
    more » « less
  5. Error-bounded lossy compression has been a critical technique to significantly reduce the sheer amounts of simulation datasets for high-performance computing (HPC) scientific applications while effectively controlling the data distortion based on user-specified error bound. In many real-world use cases, users must perform computational operations on the compressed data. However, none of the existing error-bounded lossy compressors support operations, inevitably resulting in undesired decompression costs. In this paper, we propose a novel error-bounded lossy compressor (called SZOps), which supports not only error-bounding features but efficient computations (including negation, scalar addition, scalar multiplication, mean, variance, etc.) on the compressed data without the complete decompression step, which is the first attempt to the best of our knowledge. We develop several optimization strategies to maximize the overall compression ratio and execution performance. We evaluate SZOps compared to other state-of-the-art lossy compressors based on multiple real-world scientific application datasets. 
    more » « less