skip to main content


Title: Dynamic Quality Metric Oriented Error Bounded Lossy Compression for Scientific Datasets
With ever-increasing execution scale of the high performance computing (HPC) applications, vast amount of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications, because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM.  more » « less
Award ID(s):
2153451 2003709 2104023
NSF-PAR ID:
10410115
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SC22: International Conference for High Performance Computing, Networking, Storage and Analysis
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Today’s scientific high-performance computing applications and advanced instruments are producing vast volumes of data across a wide range of domains, which impose a serious burden on data transfer and storage. Error-bounded lossy compression has been developed and widely used in the scientific community because it not only can significantly reduce the data volumes but also can strictly control the data distortion based on the user-specified error bound. Existing lossy compressors, however, cannot offer ultrafast compression speed, which is highly demanded by numerous applications or use cases (such as in-memory compression and online instrument data compression). In this paper we propose a novel ultrafast error-bounded lossy compressor that can obtain fairly high compression performance on both CPUs and GPUs and with reasonably high compression ratios. The key contributions are threefold. (1) We propose a generic error-bounded lossy compression framework—called SZx—that achieves ultrafast performance through its novel design comprising only lightweight operations such as bitwise and addition/subtraction operations, while still keeping a high compression ratio. (2) We implement SZx on both CPUs and GPUs and optimize the performance according to their architectures. (3) We perform a comprehensive evaluation with six real-world production-level scientific datasets on both CPUs and GPUs. Experiments show that SZx is 2∼16× faster than the second-fastest existing error-bounded lossy compressor (either SZ or ZFP) on CPUs and GPUs, with respect to both compression and decompression. 
    more » « less
  2. Error-bounded lossy compression is one of the most effective techniques for reducing scientific data sizes. However, the traditional trial-and-error approach used to configure lossy compressors for finding the optimal trade-off between reconstructed data quality and compression ratio is prohibitively expensive. To resolve this issue, we develop a general-purpose analytical ratio-quality model based on the prediction-based lossy compression framework, which can effectively foresee the reduced data quality and compression ratio, as well as the impact of lossy compressed data on post-hoc analysis quality. Our analytical model significantly improves the prediction-based lossy compression in three use-cases: (1) optimization of predictor by selecting the best-fit predictor; (2) memory compression with a target ratio; and (3) in-situ compression optimization by fine-grained tuning error-bounds for various data partitions. We evaluate our analytical model on 10 scientific datasets, demonstrating its high accuracy (93.47% accuracy on average) and low computational cost (up to 18.7× lower than the trial-and-error approach) for estimating the compression ratio and the impact of lossy compression on post-hoc analysis quality. We also verify the high efficiency of our ratio-quality model using different applications across the three use-cases. In addition, our experiment demonstrates that our modeling-based approach reduces the time to store the 3D RTM data with HDF5 by up to 3.4× with 128 CPU cores over the traditional solution. 
    more » « less
  3. Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors, however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning the irrelevant data, efficiently preserving different precision for multiple value intervals, and allowing users to set diverse precision over both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six real-world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual quality or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional state-of-the-art compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with the I/O throughput of the parallel file system. 
    more » « less
  4. Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor. 
    more » « less
  5. Today's scientific simulations require a significant reduction of data volume because of extremely large amounts of data they produce and the limited I/O bandwidth and storage space. Error-bounded lossy compression has been considered one of the most effective solutions to the above problem. However, little work has been done to improve error-bounded lossy compression for Adaptive Mesh Refinement (AMR) simulation data. Unlike the previous work that only leverages 1D compression, in this work, we propose to leverage high-dimensional (e.g., 3D) compression for each refinement level of AMR data. To remove the data redundancy across different levels, we propose three pre-process strategies and adaptively use them based on the data characteristics. Experiments on seven AMR datasets from a real-world large-scale AMR simulation demonstrate that our proposed approach can improve the compression ratio by up to 3.3X under the same data distortion, compared to the state-of-the-art method. In addition, we leverage the flexibility of our approach to tune the error bound for each level, which achieves much lower data distortion on two application-specific metrics. 
    more » « less