skip to main content

Title: Whole Building Life Cycle Assessment of a Living Building
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Architectural Engineering
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.— Machine learning (ML) allows for the analysis of massive quantities of high-dimensional clinical laboratory data, thereby revealing complex patterns and trends. Thus, ML can potentially improve the efficiency of clinical data interpretation and the practice of laboratory medicine. However, the risks of generating biased or unrepresentative models, which can lead to misleading clinical conclusions or overestimation of the model performance, should be recognized. Objectives.— To discuss the major components for creating ML models, including data collection, data preprocessing, model development, and model evaluation. We also highlight many of the challenges and pitfalls in developing ML models, which could result in misleading clinical impressions or inaccurate model performance, and provide suggestions and guidance on how to circumvent these challenges. Data Sources.— The references for this review were identified through searches of the PubMed database, US Food and Drug Administration white papers and guidelines, conference abstracts, and online preprints. Conclusions.— With the growing interest in developing and implementing ML models in clinical practice, laboratorians and clinicians need to be educated in order to collect sufficiently large and high-quality data, properly report the data set characteristics, and combine data from multiple institutions with proper normalization. They will also need to assess the reasons for missing values, determine the inclusion or exclusion of outliers, and evaluate the completeness of a data set. In addition, they require the necessary knowledge to select a suitable ML model for a specific clinical question and accurately evaluate the performance of the ML model, based on objective criteria. Domain-specific knowledge is critical in the entire workflow of developing ML models. 
    more » « less
  2. We describe progress on building the SLATE (Services Layer at the Edge) platform. The high level goal of SLATE is to facilitate creation of multi-institutional science computing systems by augmenting the canonical Science DMZ pattern with a generic, "programmable", secure and trusted underlayment platform. This platform permits hosting of advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE uses best-of-breed data center virtualization and containerization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts. As such it will simplify creation of scalable platforms that connect research teams, institutions and resources to accelerate science while reducing operational costs and development cycle times. 
    more » « less