skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A simple physics-based improvement to the positive degree day model
ABSTRACT Meltwater is important to understanding glacier health and dynamics. Since melt measurements are uncommon, ice ablation estimates are often based on models including the positive degree day (PDD) model. The PDD estimate is popular since it only requires air temperature as input, but suffers from the lack of physical motivation of an energy-balance model. We present a physics-based alternative to the PDD model that still only takes air/surface temperature as input. The model resembles the PDD model except accounting for time lags in ablation when cold ice needs to be warmed. The model is expressed as a differential equation with a single extra parameter related to the efficiency of heating a near-surface layer of ice. With zero thickness, the model reduces to the PDD model, providing a physical basis for the PDD model. Applying the model to data from Greenland, it improves modestly upon the PDD model, with the main improvement being better prediction of early season melting. This new model is a useful compromise, with some of the physics of more realistic models and the simplicity of a PDD model. The model should improve estimates of meltwater production and help constrain PDD parameters when empirical calibration is challenging.  more » « less
Award ID(s):
1735715
PAR ID:
10193598
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Glaciology
Volume:
64
Issue:
246
ISSN:
0022-1430
Page Range / eLocation ID:
661 to 668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The treatment of surface melt, runoff, and the snow-firn-ice transition in ice-sheet models (ISMs) is becoming increasingly important, as mobile liquid on Greenland and Antarctic flanks increases due to climate warming in the next century and beyond. Simple Positive Degree Day (PDD)-based box models used in some ISMs crudely capture liquid storage and refreezing, but need to be extended to include vertical structure through the whole firn-ice column, as in some regional climate models (RCMs). This is a necessary prelude to modeling the flow of mobile meltwater in channel-river-moulin systems, and routing to the base and/or margins of the ice sheet. More detailed column models of snow and firn exist, that include compaction, grain size, and other processes. Some focus on dry-snow zones, and have fine vertical resolution spanning the entire firn column with Lagrangian tracking of annual snow layers (e.g., FirnMICE: Lundin et al., J. Glac., 2017). However, they are mostly too computationally expensive for ISM applications, and are not designed for ablation zones with meltwater and bare ice in summer. More general models are used in some RCMs that include similar physics but with fewer layers, and are applicable both to accumulation and ablation zones. Here we formulate a new snow-firn model, similar to those in RCMs, for use within an ice-sheet model. A limited number of vertical layers is used (∼10), with Lagrangian tracking of layers, grain size evolution, compaction, ice lenses, liquid melting, storage, percolation and runoff. Surface melting is computed from linearized net atmospheric energy fluxes, not from PDDs. The model is tested using the FirnMICE experiments, and using gridded RACMO2 modern climate input over Greenland, seeking to balance model performance with computational efficiency. 
    more » « less
  2. Abstract Antarctic firn is critical for ice-shelf stability because it stores meltwater that would otherwise pond on the surface. Ponded meltwater increases the risk of hydrofracture and subsequent potential ice-shelf collapse. Here, we use output from a firn model to build a computationally simpler emulator that uses a random forest to predict ice-shelf effective firn air content, which considers impermeable ice layers that make deeper parts of the firn inaccessible to meltwater, based on climate conditions. We find that summer air temperature and precipitation are the most important climatic features for predicting firn air content. Based on the climatology from an ensemble of Earth System Models, we find that the Larsen C Ice Shelf is most at risk of firn air depletion during the 21st century, while the larger Ross and Ronne-Filchner ice shelves are unlikely to experience substantial firn air content change. This work demonstrates the utility of emulation for computationally efficient estimations of complicated ice sheet processes. 
    more » « less
  3. Abstract. The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine-terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream and river networks and large supraglacial lakes (SGLs). Streams and rivers can route water into crevasses or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when, and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically based, supraglacial hydrology model for the GrIS that is able to simulate (a) surface meltwater routing and SGL filling; (b) rapid meltwater drainage to the ice sheet bed via the hydrofracture of surface crevasses both in and outside of SGLs; (c) slow SGL drainage via overflow in supraglacial meltwater channels; and, by offline coupling with a second model, (d) the freezing and unfreezing of SGLs from autumn to spring. We call the model the Supraglacial Hydrology Evolution and Drainage (or SHED) model. We apply the model to three study regions in southwest Greenland between 2015 and 2019 (inclusive) and evaluate its performance with respect to observed supraglacial lake extents and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published, and seasonal and inter-annual variability in proglacial discharge agrees well with that which is observed, though the observations lag the model by a few days since they include transit time through the subglacial system, while the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture and with some lakes draining only partially and then refreezing. This suggests that, in order to simulate the evolution of Greenland's surface hydrological system with fidelity, a model that includes all of these processes needs to be used. In future work, we will couple our model to a subglacial model and an ice flow model and thus use our estimates of where, when, and how much meltwater gets to the bed to understand the consequences for ice flow. 
    more » « less
  4. Abstract A mass-balance model using upper-air meteorological data for input was calibrated with surface mass balance measured mainly during 1977–78 at 67 sites on Columbia Glacier, Alaska, between 135 and 2645 m a.s.l. Root-mean-square error, model vs measured, is 1.0 m w.e. a −1 , with r 2 = 0.88. A remarkable result of the analysis was that both precipitation and the factor in the positive degree-day model used to estimate surface ablation were constant with altitude. The model was applied to reconstruct glacier-wide components of surface mass balance over 1948–2007. Surface ablation, 4 km 3 ice eq. a −1 (ice equivalent), has changed little throughout the period. From 1948 until about 1981, when drastic retreat began, the surface mass balance was positive but changes in glacier geometry were small, so the positive balance was offset by calving, ∼0.9 km 3 ice eq. a −1 . During retreat, volume loss of the glacier accounted for 92% of the iceberg production. Calving increased to ∼4.3 km 3 ice eq. a −1 from 1982 to 1995, and after that until 2007 to ∼8.0 km 3 ice eq. a −1 , which was about twice the loss by surface ablation, whereas prior to retreat it was only about a quarter as much. Calving is calculated as the difference between glacier-wide surface mass balance and geodetically determined volume change. 
    more » « less
  5. null (Ed.)
    ABSTRACT Surface debris covers much of the western portion of the McMurdo Ice Shelf and has a strong influence on the local surface albedo and energy balance. Differential ablation between debris-covered and debris-free areas creates an unusual heterogeneous surface of topographically low, high-ablation, and topographically raised (‘pedestalled’), low-ablation areas. Analysis of Landsat and MODIS satellite imagery from 1999 to 2018, alongside field observations from the 2016/2017 austral summer, shows that pedestalled relict lakes (‘pedestals’) form when an active surface meltwater lake that develops in the summer, freezes-over in winter, resulting in the lake-bottom debris being masked by a high-albedo, superimposed, ice surface. If this ice surface fails to melt during a subsequent melt season, it experiences reduced surface ablation relative to the surrounding debris-covered areas of the ice shelf. We propose that this differential ablation, and resultant hydrostatic and flexural readjustments of the ice shelf, causes the former supraglacial lake surface to become increasingly pedestalled above the lower topography of the surrounding ice shelf. Consequently, meltwater streams cannot flow onto these pedestalled features, and instead divert around them. We suggest that the development of pedestals has a significant influence on the surface-energy balance, hydrology and flexure of the ice shelf. 
    more » « less