skip to main content


Title: A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)

Abstract. The Greenland Ice Sheet (GrIS) is losing mass as the climate warms through both increased meltwater runoff and ice discharge at marine-terminating sectors. At the ice sheet surface, meltwater runoff forms a dynamic supraglacial hydrological system which includes stream and river networks and large supraglacial lakes (SGLs). Streams and rivers can route water into crevasses or into supraglacial lakes with crevasses underneath, both of which can then hydrofracture to the ice sheet base, providing a mechanism for the surface meltwater to access the bed. Understanding where, when, and how much meltwater is transferred to the bed is important because variability in meltwater supply to the bed can increase ice flow speeds, potentially impacting the hypsometry of the ice sheet in grounded sectors, and iceberg discharge to the ocean. Here we present a new, physically based, supraglacial hydrology model for the GrIS that is able to simulate (a) surface meltwater routing and SGL filling; (b) rapid meltwater drainage to the ice sheet bed via the hydrofracture of surface crevasses both in and outside of SGLs; (c) slow SGL drainage via overflow in supraglacial meltwater channels; and, by offline coupling with a second model, (d) the freezing and unfreezing of SGLs from autumn to spring. We call the model the Supraglacial Hydrology Evolution and Drainage (or SHED) model. We apply the model to three study regions in southwest Greenland between 2015 and 2019 (inclusive) and evaluate its performance with respect to observed supraglacial lake extents and proglacial discharge measurements. We show that the model reproduces 80 % of observed lake locations and provides good agreement with observations in terms of the temporal evolution of lake extent. Modelled moulin density values are in keeping with those previously published, and seasonal and inter-annual variability in proglacial discharge agrees well with that which is observed, though the observations lag the model by a few days since they include transit time through the subglacial system, while the model does not. Our simulations suggest that lake drainage behaviours may be more complex than traditional models suggest, with lakes in our model draining through a combination of both overflow and hydrofracture and with some lakes draining only partially and then refreezing. This suggests that, in order to simulate the evolution of Greenland's surface hydrological system with fidelity, a model that includes all of these processes needs to be used. In future work, we will couple our model to a subglacial model and an ice flow model and thus use our estimates of where, when, and how much meltwater gets to the bed to understand the consequences for ice flow.

 
more » « less
Award ID(s):
1841607
NSF-PAR ID:
10513682
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
GMD
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
20
ISSN:
1991-9603
Page Range / eLocation ID:
5803 to 5823
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise.

     
    more » « less
  2. Abstract

    The expansion of refrozen ice slabs in Greenland's firn may enhance meltwater runoff and increase surface mass loss. However, the impermeability of ice slabs and the pathways for meltwater export from these regions remain poorly characterized. Here, we present ice‐penetrating radar observations of extensive meltwater infiltration and refreezing beneath ice slabs in Northwest Greenland. We show that these buried ice complexes form where supraglacial streams or lakes drain through surface crevasses into relict firn beneath the ice slabs. This suggests that the firn can continue to buffer mass loss from surface meltwater runoff and limit meltwater delivery to the ice sheet bed even after ice slabs have formed. Therefore, a significant time lag may exist between the initial formation of ice slabs and the onset of complete surface runoff and seasonal meltwater drainage to the subglacial system in interior regions of the ice sheet.

     
    more » « less
  3. Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of- magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 mm3 to 215 ± 90.2 mm3) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input. 
    more » « less
  4. Abstract

    Links between hydrology and sliding of the Greenland Ice Sheet (GrIS) are poorly understood. Here, we monitored meltwater's propagation through the glacial hydrologic system for catchments at different elevations by quantifying the lag cascade as daily meltwater pulses traveled through the supraglacial, englacial, and subglacial drainage systems. We found that meltwater's residence time within supraglacial catchments—depending upon area, snow cover, and degree of channelization—controls the timing of peak moulin head, resulting in the 2 hr later peak observed at higher elevations. Unlike at lower elevations where peak moulin head and peak sliding coincided, at higher elevations peak sliding lagged peak moulin head by ∼2.8 hr. This delay was likely caused by the area's lower moulin density, which required diurnal pressure oscillations to migrate further into the distributed drainage system to elicit the observed velocity response. These observations highlight the supraglacial drainage system's control on coupling GrIS subglacial hydrology and sliding.

     
    more » « less
  5. null (Ed.)
    Abstract Surface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3  $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2  $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input. 
    more » « less