skip to main content


Title: Real Data and Application based Data Science Education in Engineering
The democratization of data is transforming our world. Together with the advances in computer and engineering technology, these advancements drive the rapid change in the landscape of jobs and work. There are many reports indicating that industry finds itself constrained by today’s relatively small supply of well-trained data science talent, and hiring demand for data scientists has begun to increase rapidly; some projections forecast that approximately 2.7 million new data science positions will be available by 2020. Unsurprisingly, the data science and engineering (DSE) programs across the nation have grown significantly in the past a few years. DSE education requires both appropriate classwork and hands-on experience with real data and real applications. While significant progress has been made in the former, one key aspect that yet to be addressed is hands-on experience incorporating real-world applications. In this work, we will review the efforts that explore real data and application based data science education.  more » « less
Award ID(s):
1933873
NSF-PAR ID:
10193608
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of 2020 ASEE-SE Conference
Page Range / eLocation ID:
Paper no. 46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The democratization of data is transforming our world. Together with the advances in computer and engineering technology, these advancements drive the rapid change in the landscape of jobs and work. There are many reports indicating that industry finds itself constrained by today’s relatively small supply of well-trained data science talent, and hiring demand for data scientists has begun to increase rapidly; some projections forecast that approximately 2.7 million new data science positions will be available by 2020. Unsurprisingly, the data science and engineering (DSE) programs across the nation have grown significantly in the past a few years. DSE education requires both appropriate classwork and hands-on experience with real data and real applications. While significant progress has been made in the former, one key aspect that yet to be addressed is hands-on experience incorporating real-world applications. In this work, we will review the efforts that explore real data and application based data science education. 
    more » « less
  2. null (Ed.)
    It has been recognized that jobs across different domains is becoming more data driven, and many aspects of the economy, society, and daily life depend more and more on data. Undergraduate education offers a critical link in providing more data science and engineering (DSE) exposure to students and expanding the supply of DSE talent. The National Academies have identified that effective DSE education requires both appropriate classwork and hands-on experience with real data and real applications. Currently significant progress has been made in classwork, while progress in hands-on research experience has been lacking. To fill this gap, we have proposed to create data-enabled engineering project (DEEP) modules based on real data and applications, which is currently funded by the National Science Foundation (NSF) under the Improving Undergraduate STEM Education (IUSE) program. To achieve project goal, we have developed two internet-of-things (IoT) enabled laboratory engineering testbeds (LETs) and generated real data under various application scenarios. In addition, we have designed and developed several sample DEEP modules in interactive Jupyter Notebook using the generated data. These sample DEEP modules will also be ported to other interactive DSE learning environments, including Matlab Live Script and R Markdown, for wide and easy adoption. Finally, we have conducted metacognitive awareness gain (MAG) assessments to establish a baseline for assessing the effectiveness of DEEP modules in enhancing students’ reflection and metacognition. The DEEP modules that are currently being developed target students in Chemical Engineering, Electrical Engineering, Computer Science, and MS program in Data Science at xxx University. The modules will be deployed in the Spring of 2021, and we expect to have immediate impact to the targeted classes and students. We also anticipate that the DEEP modules can be adopted without modification to other disciplines in Engineering such as Mechanical, Industrial and Aerospace Engineering. They can also be easily extended to other disciplines in other colleges such as Liberal Arts by incorporating real data and applications from the respective disciplines. In this work, we will share our ideas, the rationale behind the proposed approach, the planned tasks for the project, the demonstration of modules developed, and potential dissemination venues. 
    more » « less
  3. Abstract Practitioner notes

    What is already known about this topic

    Scholarly attention has turned to examining Artificial Intelligence (AI) literacy in K‐12 to help students understand the working mechanism of AI technologies and critically evaluate automated decisions made by computer models.

    While efforts have been made to engage students in understanding AI through building machine learning models with data, few of them go in‐depth into teaching and learning of feature engineering, a critical concept in modelling data.

    There is a need for research to examine students' data modelling processes, particularly in the little‐researched realm of unstructured data.

    What this paper adds

    Results show that students developed nuanced understandings of models learning patterns in data for automated decision making.

    Results demonstrate that students drew on prior experience and knowledge in creating features from unstructured data in the learning task of building text classification models.

    Students needed support in performing feature engineering practices, reasoning about noisy features and exploring features in rich social contexts that the data set is situated in.

    Implications for practice and/or policy

    It is important for schools to provide hands‐on model building experiences for students to understand and evaluate automated decisions from AI technologies.

    Students should be empowered to draw on their cultural and social backgrounds as they create models and evaluate data sources.

    To extend this work, educators should consider opportunities to integrate AI learning in other disciplinary subjects (ie, outside of computer science classes).

     
    more » « less
  4. The rise in CS enrollments in the past few years has also resulted in a more diverse population of learners that have different expectations, motivations and interests, making it important to provide relevant learning materials in early foundational courses. Grounding Computer Science concepts in reality by solving important real-world or fun problems are keys to increasing students’ motivation and engagement in computing, which may help improve student retention and success. This workshop provides instructors with a hands-on introduction to BRIDGES, a software infrastructure for programming assignments in early computer science courses, such as CS1, CS2, data structures, and algorithm analysis. BRIDGES provides the tools for creating engaging programming assignments, including: (1) a simplified API for accessing real-world data, such as those from social networks, entertainment (songs, movies), science, engineering (USGIS Earthquakes, elevation maps), geography (OpenStreet maps), and literature (Project Gutenberg), (2) creating visualizations of the data, (3) an easy to use API for game-based assignments, and, (4) algorithm benchmarking. Workshop attendees will engage in hands-on experience using BRIDGES with multiple datasets, have the opportunity to discuss the challenges they face in their own courses, and how BRIDGES can be used in their own courses. Using BRIDGES in data structures, algorithms, and other courses have shown improved retention of CS knowledge and better student performance in follow-on courses, when compared to students from other sections of the same course. BRIDGES has impacted nearly 2000 students across 20 institutions since its inception 5 years ago. A repository of BRIDGES assignments is now maintained for instructors using BRIDGES in their classes. 
    more » « less
  5. Data Science plays a vital role in sciences and engineering disciplines to discover meaningful information and predict the outcome of real-world problems. Despite the significance of this field and high demand, knowledge of how to effectively provide data science research experience to STEM students is scarce. This paper focuses on the role of data science and analytics education to improve the students' computing and analytical skills across a range of domain-specific problems. The paper studies four examples of data-intensive STEM projects for supervised undergraduate research experiences (SURE) in Mechanical Engineering, Biomedical science, Quantum Physics, and Cybersecurity. The developed projects include the applications of data science for improving additive manufacturing, automating microscopy images analysis, identifying the quantum optical modes, and detecting network intrusion. The paper aims to provide some guidelines to effectively educate the next generation of STEM undergraduate and graduate students and prepare STEM professionals with interdisciplinary knowledge, skills, and competencies in data science. The paper includes a summary of activities and outcomes from our research and education in the field of data science and machine learning. We will evaluate the student learning outcomes in solving big data interdisciplinary projects to confront the new challenges in a computationally-driven world. 
    more » « less