skip to main content


Title: Random Projection Clustering on Streaming Data
Clustering streaming data has gained importance in recent years due to an expanding opportunity to discover knowledge in widely available data streams. As streams are potentially evolving and unbounded sequence of data objects, clustering algorithms capable of performing fast and incremental processing of data points are necessary. This paper presents a method of clustering high-dimensional data streams using approximate methods called streamingRPHash. streamingRPHash combines random projections with locality-sensitivity hashing to construct a high-performance clustering method. streamingRPHash is amenable to distributed processing frameworks such as Map-Reduce, and also has the benefits of constrained overall complexity growth. This paper describes streamingRPHash algorithm and its various configurations. The clustering performance of streamingRPHash is compared to several alternatives. Experimental results show that streamingRPHash has comparable clustering accuracy and substantially lower runtime and memory usage.  more » « less
Award ID(s):
1440420
NSF-PAR ID:
10193707
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE ICDM Workshop on High Dimensional Data Mining
Page Range / eLocation ID:
708 to 715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Changes in data distribution of streaming data (i.e., concept drifts), constitute a central issue in online data mining. The main reason is that these changes are responsible for outdating stream learning models, reducing their predictive performance over time. A common approach adopted by real-time adaptive systems to deal with concept drifts is to employ detectors that indicate the best time for updates. However, an unrealistic assumption of most detectors is that the labels become available immediately after data arrives. In this paper, we introduce an unsupervised and model-independent concept drift detector suitable for high-speed and high-dimensional data streams in realistic scenarios with the scarcity of labels. We propose a straightforward two-dimensional representation of the data aiming faster processing for detection. We develop a simple adaptive drift detector on this visual representation that is efficient for fast streams with thousands of features and is accurate as existing costly methods that perform various statistical tests. Our method achieves better performance measured by execution time and accuracy in classification problems for different types of drifts, including abrupt, oscillating, and incremental. Experimental evaluation demonstrates the versatility of the method in several domains, including astronomy, entomology, public health, political science, and medical science. 
    more » « less
  2. null (Ed.)
    Stream mining considers the online arrival of examples at high speed and the possibility of changes in its descriptive features or class definitions compared with past knowledge (i.e., concept drifts). The fast detection of drifts is essential to keep the predictive model updated and stable in changing environments. For many applications, such as those related to smart sensors, the high number of features is an additional challenge in terms of memory and time for stream processing. This paper presents an unsupervised and model-independent concept drift detector suitable for high-speed and high-dimensional data streams. We propose a straightforward two-dimensional data representation that allows the faster processing of datasets with a large number of examples and dimensions. We developed an adaptive drift detector on this visual representation that is efficient for fast streams with thousands of features and is accurate as existing costly methods that perform various statistical tests considering each feature individually. Our method achieves better performance measured by execution time and accuracy in classification problems for different types of drifts. The experimental evaluation considering synthetic and real data demonstrates the method’s versatility in several domains, including entomology, medicine, and transportation systems. 
    more » « less
  3. The non-stationary nature of data streams strongly challenges traditional machine learning techniques. Although some solutions have been proposed to extend traditional machine learning techniques for handling data streams, these approaches either require an initial label set or rely on specialized design parameters. The overlap among classes and the labeling of data streams constitute other major challenges for classifying data streams. In this paper, we proposed a clustering-based data stream classification framework to handle non-stationary data streams without utilizing an initial label set. A density-based stream clustering procedure is used to capture novel concepts with a dynamic threshold and an effective active label querying strategy is introduced to continuously learn the new concepts from the data streams. The sub-cluster structure of each cluster is explored to handle the overlap among classes. Experimental results and quantitative comparison studies reveal that the proposed method provides statistically better or comparable performance than the existing methods.

     
    more » « less
  4. Deep reinforcement learning (RL) has shown impressive results in a variety of domains, learning directly from high-dimensional sensory streams. However, when neural networks are trained in a fixed environment, such as a single level in a video game, they will usually overfit and fail to generalize to new levels. When RL models overfit, even slight modifications to the environment can result in poor agent performance. This paper explores how procedurally generated levels during training can increase generality. We show that for some games procedural level generation enables generalization to new levels within the same distribution. Additionally, it is possible to achieve better performance with less data by manipulating the difficulty of the levels in response to the performance of the agent. The generality of the learned behaviors is also evaluated on a set of human-designed levels. The results suggest that the ability to generalize to human-designed levels highly depends on the design of the level generators. We apply dimensionality reduction and clustering techniques to visualize the generators’ distributions of levels and analyze to what degree they can produce levels similar to those designed by a human. 
    more » « less
  5. null (Ed.)
    Measuring flow spread in real time from large, high-rate data streams has numerous practical applications, where a data stream is modeled as a sequence of data items from different flows and the spread of a flow is the number of distinct items in the flow. Past decades have witnessed tremendous performance improvement for single-flow spread estimation. However, when dealing with numerous flows in a data stream, it remains a significant challenge to measure per-flow spread accurately while reducing memory footprint. The goal of this paper is to introduce new multi-flow spread estimation designs that incur much smaller processing overhead and query overhead than the state of the art, yet achieves significant accuracy improvement in spread estimation. We formally analyze the performance of these new designs. We implement them in both hardware and software, and use real-world data traces to evaluate their performance in comparison with the state of the art. The experimental results show that our best sketch significantly improves over the best existing work in terms of estimation accuracy, data item processing throughput, and online query throughput. 
    more » « less