skip to main content

Title: Weighted Transducers for Robustness Verification
Automata theory provides us with fundamental notions such as languages, membership, emptiness and inclusion that in turn allow us to specify and verify properties of reactive systems in a useful manner. However, these notions all yield "yes"/"no" answers that sometimes fall short of being satisfactory answers when the models being analyzed are imperfect, and the observations made are prone to errors. To address this issue, a common engineering approach is not just to verify that a system satisfies a property, but whether it does so robustly. We present notions of robustness that place a metric on words, thus providing a natural notion of distance between words. Such a metric naturally leads to a topological neighborhood of words and languages, leading to quantitative and robust versions of the membership, emptiness and inclusion problems. More generally, we consider weighted transducers to model the cost of errors. Such a transducer models neighborhoods of words by providing the cost of rewriting a word into another. The main contribution of this work is to study robustness verification problems in the context of weighted transducers. We provide algorithms for solving the robust and quantitative versions of the membership and inclusion problems while providing useful motivating case more » studies including approximate pattern matching problems to detect clinically relevant events in a large type-1 diabetes dataset. « less
Authors:
; ; ; ;
Award ID(s):
1836900
Publication Date:
NSF-PAR ID:
10193725
Journal Name:
Leibniz international proceedings in informatics
Volume:
171
Page Range or eLocation-ID:
17:1--17:21
ISSN:
1868-8969
Sponsoring Org:
National Science Foundation
More Like this
  1. Bilinguals occasionally produce language intrusion errors (inadvertent translations of the intended word), especially when attempting to produce function word targets, and often when reading aloud mixed-language paragraphs. We investigate whether these errors are due to a failure of attention during speech planning, or failure of monitoring speech output by classifying errors based on whether and when they were corrected, and investigating eye movement behaviour surrounding them. Prior research on this topic has primarily tested alphabetic languages (e.g., Spanish–English bilinguals) in which part of speech is confounded with word length, which is related to word skipping (i.e., decreased attention). Therefore, wemore »tested 29 Chinese–English bilinguals whose languages differ in orthography, visually cueing language membership, and for whom part of speech (in Chinese) is less confounded with word length. Despite the strong orthographic cue, Chinese–English bilinguals produced intrusion errors with similar effects as previously reported (e.g., especially with function word targets written in the dominant language). Gaze durations did differ by whether errors were made and corrected or not, but these patterns were similar for function and content words and therefore cannot explain part of speech effects. However, bilinguals regressed to words produced as errors more often than to correctly produced words, but regressions facilitated correction of errors only for content, not for function words. These data suggest that the vulnerability of function words to language intrusion errors primarily reflects automatic retrieval and failures of speech monitoring mechanisms from stopping function versus content word errors after they are planned for production.

    « less
  2. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering educationmore »to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less
  3. We study how to schedule data sources in a wireless time-sensitive information system with multiple heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not been studied for systems with multiple heterogeneous channels, mainly because indexability is not well defined when there are multiple dual cost values, one for each channel. To overcome thismore »difficulty, we introduce new notions of partial indexability and partial index, which are defined with respect to one channel's cost, given all other channels' costs. We then combine the ideas of partial indices and max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal in minimizing the total expected AoI, under a technical condition on a global attractor property. Extensive performance simulations demonstrate that the proposed policy offers significant gains over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of independent interest and could be useful for other problems with multiple heterogeneous resources.« less
  4. We turn the definition of individual fairness on its head - rather than ascertaining the fairness of a model given a predetermined metric, we find a metric for a given model that satisfies individual fairness. This can facilitate the discussion on the fairness of a model, addressing the issue that it may be difficult to specify a priori a suitable metric. Our contributions are twofold:First, we introduce the definition of a minimal metric and characterize the behavior of models in terms of minimal metrics. Second, for more complicated models, we apply the mechanism of randomized smoothing from adversarial robustness tomore »make them individually fair under a given weighted Lp metric. Our experiments show that adapting the minimal metrics of linear models to more complicated neural networks can lead to meaningful and interpretable fairness guarantees at little cost to utility.

    « less
  5. Expanding on previous work of automating functional modeling, we have developed a more informed automation approach by assigning a weighted confidence metric to the wide variety of data in a design repository. Our work focuses on automating what we call linear functional chains, which are a component-based section of a full functional model. We mine the Design Repository to find correlations between component and function and flow. The automation algorithm we developed organizes these connections by component-function-flow frequency (CFF frequency), thus allowing the creation of linear functional chains. In previous work, we found that CFF frequency is the best metricmore »in formulating the linear functional chain for an individual component; however, we found that this metric did not account for prevalence and consistency in the Design Repository data. To better understand our data, we developed a new metric, which we refer to as weighted confidence, to provide insight on the fidelity of the data, calculated by taking the harmonic mean of two metrics we extracted from our data, prevalence, and consistency. This method could be applied to any dataset with a wide range of individual occurrences. The contribution of this research is not to replace CFF frequency as a method of finding the most likely component-function-flow correlations but to improve the reliability of the automation results by providing additional information from the weighted confidence metric. Improving these automation results, allows us to further our ultimate objective of this research, which is to enable designers to automatically generate functional models for a product given constituent components.« less