skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems
We examine the problem of designing learning-augmented algorithms for metrical task systems (MTS) that exploit machine-learned advice while maintaining rigorous, worst-case guarantees on performance. We propose an algorithm, DART, that achieves this dual objective, providing cost within a multiplicative factor (1+ϵ) of the machine-learned advice (i.e., consistency) while ensuring cost within a multiplicative factor 2O(1/ϵ) of a baseline robust algorithm (i.e., robustness) for any ϵ>0 . We show that this exponential tradeoff between consistency and robustness is unavoidable in general, but that in important subclasses of MTS, such as when the metric space has bounded diameter and in the k -server problem, our algorithm achieves improved, polynomial tradeoffs between consistency and robustness.  more » « less
Award ID(s):
2105648 2146814 2106403 2136197
PAR ID:
10410611
Author(s) / Creator(s):
Date Published:
Journal Name:
roceedings of The 26th International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Azar, Yossi; Panigrahi, Debmalya (Ed.)
    We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with n bidders can achieve a O (log1-∈ n ) approximation of the optimal social welfare for a constant ∈ > 0, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (known as robustness ). Our first clock auction achieves the best of both worlds: (1 + ∈ )-consistency for any desired constant ∈ > 0 and O (log n ) robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency∞ and provide an auction that achieves a near-optimal trade-off between consistency∞ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the performance of the auction degrades smoothly as a function of the prediction error. 
    more » « less
  2. This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms. 
    more » « less
  3. null (Ed.)
    This paper studies the online energy scheduling problem in a hy- brid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the pro- posed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimal- ity of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal de- terministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms. 
    more » « less
  4. null (Ed.)
    This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: textit{robustness} that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and textit{consistency} for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform algorithms optimized for worst-case and fully data-driven algorithms. 
    more » « less
  5. Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the "Population Recovery" problem, we give an extremely simple algorithm that learns the Pauli error rates of an n -qubit channel to precision ϵ in ℓ ∞ using just O ( 1 / ϵ 2 ) log ⁡ ( n / ϵ ) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O ( 1 / ϵ ) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1 / 4 .We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η . In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ϵ (i.e., additive precision ϵ η ) using just O ( 1 ϵ 2 η ) log ⁡ ( n / ϵ ) applications of the channel. 
    more » « less