skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – I. Survey description and a first look at G9.62+0.19
ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation.  more » « less
Award ID(s):
1715867
PAR ID:
10194069
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
2790 to 2820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The ionization feedback from H  II regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a typical size of 0.1–1 pc), such as dust temperature and turbulence, on the clump scale. The question of whether the presence of H  II regions modifies the core-scale (~0.025 pc) fragmentation and star formation in HMSCs remains to be explored. Aims. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by H  II regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted candidate HMSCs. Methods. Using the ALMA 1.3 mm continuum, with a typical angular resolution of 1.3′′, we imaged eight candidate HMSCs, including four impacted by H  II regions and another four situated in the quiet environment. The less-impacted candidate HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. We carried out a comparison between the two types of candidate HMSCs. We used multi-wavelength data to analyze the interaction between H  II regions and the impacted candidate HMSCs. Results. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted candidate HMSCs, even though H  II regions seem to affect the spatial distribution of the fragmented cores. Both types of candidate HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length λ J,clump th and 0.3 λ J,clump th . The ALMA emission morphology of the impacted candidate HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of H  II regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in candidate HMSCs. Conclusions. The fragmentation at ~0.025 pc scale for both types of candidate HMSCs is likely to be thermal-dominant, meanwhile H  II regions probably have the capacity to assist in the formation of dense structures in the impacted candidate HMSCs. Future ALMA imaging surveys covering a large number of impacted candidate HMSCs with high turbulence levels are needed to confirm the trend of fragmentation indicated in this study. 
    more » « less
  2. Context.The extended ultraviolet (XUV) disks of nearby galaxies show ongoing massive-star formation, but their parental molecular clouds remain mostly undetected despite searches in CO(1–0) and CO(2–1). The recent detection of 23 clouds in the higher excitation transition CO(3–2) within the XUV disk of M83 thus requires an explanation. Aims.We test the hypothesis introduced to explain the non-detections and recent detection simultaneously: The clouds in XUV disks have a clump-envelope structure similar to those in Galactic star-forming clouds, having dense star-forming clumps (or concentrations of multiple clumps) at their centers, which predominantly contribute to the CO(3–2) emission and are surrounded by less dense envelopes, where CO molecules are photo-dissociated due to the low-metallicity environment there. Methods.We utilize new high-resolution ALMA CO(3–2) observations of a subset (11) of the 23 clouds in the XUV disk of M83. Results.We confirm the compactness of the CO(3–2)-emitting dense clumps (or their concentrations), finding clump diameters below the spatial resolution of 6–9 pc. This is similar to the size of the dense gas region in the Orion A molecular cloud, a local star-forming cloud with massive-star formation. Conclusions.The dense star-forming clumps are common between normal and XUV disks. This may also indicate that once the cloud structure is set, the process of star formation is governed by the cloud’s internal physics rather than by external triggers. This simple model explains the current observations of clouds with ongoing massive-star formation, although it may require some adjustment, for example including the effect of cloud evolution, to describe star formation in molecular clouds more generally. 
    more » « less
  3. ABSTRACT We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass $${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$$, effective radius $${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$$, and surface density $$\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches $${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$$ and $$\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters. 
    more » « less
  4. The physical mechanisms behind the fragmentation of high-mass dense clumps into compact star-forming cores and the properties of these cores are fundamental topics that are heavily investigated in current astrophysical research. The ALMAGAL survey provides the opportunity to study this process at an unprecedented level of detail and statistical significance, featuring high-angular resolution 1.38 mm ALMA observations of 1013 massive dense clumps at various Galactic locations. These clumps cover a wide range of distances (~2–8 kpc), masses (~102–104M), surface densities (0.1–10 g cm−2), and evolutionary stages (luminosity over mass ratio indicator of ~0.05 <L/M <450L/M). Here, we present the catalog of compact sources obtained with theCuTExalgorithm from continuum images of the full ALMAGAL clump sample combining ACA-7 m and 12 m ALMA arrays, reaching a uniform high median spatial resolution of ~1400 au (down to ~800 au). We characterize and discuss the revealed fragmentation properties and the photometric and estimated physical parameters of the core population. The ALMAGAL compact source catalog includes 6348 cores detected in 844 clumps (83% of the total), with a number of cores per clump between 1 and 49 (median of 5). The estimated core diameters are mostly within ~800–3000 au (median of 1700 au). We assigned core temperatures based on theL/Mof the hosting clump, and obtained core masses from 0.002 to 345M(complete above 0.23 M), exhibiting a good correlation with the core radii (M ∝ R2.6). We evaluated the variation in the core mass function (CMF) with evolution as traced by the clumpL/M, finding a clear, robust shift and change in slope among CMFs within subsamples at different stages. This finding suggests that the CMF shape is not constant throughout the star formation process, but rather it builds (and flattens) with evolution, with higher core masses reached at later stages. We found that all cores within a clump grow in mass on average with evolution, while a population of possibly newly formed lower-mass cores is present throughout. The number of cores increases with the core masses, at least until the most massive core reaches ~10M. More generally, our results favor a clump-fed scenario for high-mass star formation, in which cores form as low-mass seeds, and then gain mass while further fragmentation occurs in the clump. 
    more » « less
  5. Context.One of the central questions in astrophysics is the origin of the initial mass function (IMF). It is intrinsically linked to the processes from which it originates, and hence its connection with the core mass function (CMF) must be elucidated. Aims.We aim to measure the CMF in the evolved W33-Main star-forming protocluster to compare it with CMF recently obtained in other Galactic star-forming regions, including the ones that are part of the ALMA-IMF program. Methods.We used observations from the ALMA-IMF large programme: ~2′ × 2′ maps of emission from the continuum and selected lines at 1.3 mm and 3 mm observed by the ALMA 12m only antennas. Our angular resolution was typically 1″, that is, ~2400 au at a distance of 2.4 kpc. The lines we analysed are CO (2–1), SiO (5–4), N2H+ (1–0), H41α as well as He41α blended with C41α. We built a census of dense cores in the region, and we measured the associated CMF based on a core-dependent temperature value. Results.We confirmed the ‘evolved’ status of W33-Main by identifiying three HIIregions within the field, and to a lesser extent based on the number and extension of N2H+filaments. We produced a filtered core catalogue of 94 candidates that we refined to take into account the contamination of the continuum by free-free and line emission, obtaining 80 cores with masses that range from 0.03 to 13.2M. We fitted the resulting high-mass end of the CMF with a single power law of the form N(log(M)) ∝ Mα, obtainingα= −1.44−0.22+0.16, which is slightly steeper but consistent with the Salpeter index. We categorised our cores as prestellar and protostellar, mostly based on outflow activity and hot core nature. We found the prestellar CMF to be steeper than a Salpeter-like distribution, and the protostellar CMF to be slightly top heavy. We found a higher proportion of cores within the HIIregions and their surroundings than in the rest of the field. We also found that the cores’ masses were rather low (maximum mass of ~13M). Conclusions.We find that star formation in W33-Main could be compatible with a ‘clump-fed’ scenario of star formation in an evolved cloud characterised by stellar feedback in the form of HIIregions, and under the influence of massive stars outside the field. Our results differ from those found in less evolved young star-forming regions in the ALMA-IMF program. Further investigations are needed to elucidate the evolution of late CMFs towards the IMF over statistically significant samples. 
    more » « less