skip to main content

Title: Best 2019 PIC III Paper: Do They Understand Your Language? Access Their Fluency with Vector Representation
In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed more » in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. « less
Authors:
; ; ; ;
Award ID(s):
1834425
Publication Date:
NSF-PAR ID:
10194335
Journal Name:
2020 ASEE Virtual Annual Conference Content Access
Sponsoring Org:
National Science Foundation
More Like this
  1. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineeringmore »statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool.« less
  2. A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor inmore »to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regression model to predict TRCV scores using the pre-class MCT scores as well as other measures of student preparation in the form of grades in prerequisite math and physics coursework. We then extend the analysis to consider both MCT and TRCV scores as predictors for student performance on the Concept Assessment Test in Statics. We find that spatial abilities are a factor in students’ development of representational competence with vectors. We also find that representational competence with vectors likely mediates the importance of spatial abilities to student success in developing broader conceptual understanding in statics. We conclude by discussing implications for mechanics instruction.« less
  3. A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor inmore »to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regression model to predict TRCV scores using the pre-class MCT scores as well as other measures of student preparation in the form of grades in prerequisite math and physics coursework. We then extend the analysis to consider both MCT and TRCV scores as predictors for student performance on the Concept Assessment Test in Statics. We find that spatial abilities are a factor in students’ development of representational competence with vectors. We also find that representational competence with vectors likely mediates the importance of spatial abilities to student success in developing broader conceptual understanding in statics. We conclude by discussing implications for mechanics instruction.« less
  4. Modern 3D printing technology makes it relatively easy and affordable to produce physical models that offer learners concrete representations of otherwise abstract concepts and representations. We hypothesize that integrating hands-on learning with these models into traditionally lecture-dominant courses may help learners develop representational competence, the ability to interpret, switch between, and appropriately use multiple representations of a concept as appropriate for learning, communication and analysis. This approach also offers potential to mitigate difficulties that learners with lower spatial abilities may encounter in STEM courses. Spatial thinking connects to representational competence in that internal mental representations (i.e. visualizations) facilitate work usingmore »multiple external representations. A growing body of research indicates well-developed spatial skills are important to student success in many STEM majors, and that students can improve these skills through targeted training. This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with 3D-printed models, build the theoretical basis for how they support learning, and assess their effectiveness in the classroom. We are exploring how such models can support learners’ development of conceptual understanding and representational competence in calculus and engineering statics. We are also exploring how to leverage the model-based activities to embed spatial skills training into these courses. The project is addressing these questions through parallel work piloting model-based learning activities in the classroom and by investigating specific attributes of the activities in lab studies and focus groups. To date we have developed and piloted a mature suite of activities covering a variety of topics for both calculus and statics. Class observations and complementary studies in the psychology lab are helping us develop a theoretical framework for using the models in instruction. Close observation of how students use the models to solve problems and as communication tools helps identify effective design elements. We are administering two spatial skills assessments as pre/post instruments: the Purdue Spatial Visualizations Test: Rotations (PSVT:R) in calculus; and the Mental Cutting Test (MCT) in statics. We are also developing strategies and refining approaches for assessing representational competence in both subject areas. Moving forward we will be using these assessments in intervention and control sections of both courses to assess the effectiveness of the models for all learners and subgroups of learners.« less
  5. Perusal of any common statics textbook will reveal a reference table of standard supports in the section introducing rigid body equilibrium analysis. Most statics students eventually memorize a heuristic approach to drawing a free-body diagram based on applying the information in this table. First, identify the entry in the table that matches the schematic representation of a connection. Then draw the corresponding force and/or couple moment vectors on the isolated body according to their positive sign conventions. Multiple studies have noted how even high performing students tend to rely on this heuristic rather than conceptual reasoning. Many students struggle whenmore »faced with a new engineering connection that does not match an entry in the supports table. In this paper, we describe an inquiry-based approach to introducing support models and free-body diagrams of rigid bodies. In a series of collaborative learning activities, students practice reasoning through the force interactions at example connections such as a bolted flange or a hinge by considering how the support resists translation and rotation in each direction. Each team works with the aid of a physical model to analyze how changes in the applied loads affect the reaction components. A second model of the isolated body provides opportunity to develop a tactile feel for the reaction forces. We emphasize predicting the direction of each reaction component, rather than following a standard sign convention, to provide opportunities for students to practice conceptual application of equilibrium conditions. Students’ also draw detailed diagrams of the force interactions at the mating surfaces in the connection, including distributed loadings when appropriate. We use equivalent systems concepts to relate these detailed force diagrams to conventional reaction components. Targeted assessments explore whether the approach described above might improve learning outcomes and influence how students think about free-body diagrams. Students use an online tool to attempt two multiple-choice concept questions after each activity. The questions represent near and far transfer applications of the concepts emphasized and prompt students for written explanation. Our analysis of the students’ explanations indicates that most students engage in the conceptual reasoning we encourage, though reasoning errors are common. Analysis of final exam work and comparison to an earlier term in which we used a more conventional approach indicate a majority of students incorporate conceptual reasoning practice into their approach to free-body diagrams. This does not come at the expense of problem-solving accuracy. Student feedback on the activities is overwhelmingly positive.« less