- Award ID(s):
- 1724748
- Publication Date:
- NSF-PAR ID:
- 10194352
- Journal Name:
- The Cryosphere
- Volume:
- 14
- Issue:
- 4
- Page Range or eLocation-ID:
- 1259 to 1271
- ISSN:
- 1994-0424
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC andmore »
-
Abstract. In sea-ice-covered areas, the sea ice floe size distribution (FSD) plays an important role in many processes affecting the coupled sea–ice–ocean–atmosphere system. Observations of the FSD are sparse – traditionally taken via a painstaking analysis of ice surface photography – and the seasonal and inter-annual evolution of floe size regionally and globally is largely unknown. Frequently, measured FSDs are assessed using a single number, the scaling exponent of the closest power-law fit to the observed floe size data, although in the absence of adequate datasets there have been limited tests of this “power-law hypothesis”. Here we derive and explain a mathematical technique for deriving statistics of the sea ice FSD from polar-orbiting altimeters, satellites with sub-daily return times to polar regions with high along-track resolutions. Applied to the CryoSat-2 radar altimetric record, covering the period from 2010 to 2018, and incorporating 11 million individual floe samples, we produce the first pan-Arctic climatology and seasonal cycle of sea ice floe size statistics. We then perform the first pan-Arctic test of the power-law hypothesis, finding limited support in the range of floe sizes typically analyzed in photographic observational studies. We compare the seasonal variability in observed floe size to fully coupledmore »
-
Abstract The fast decline of Arctic sea ice necessitates a stronger focus on understanding the Arctic sea ice predictability and developing advanced forecast methods for all seasons and for pan-Arctic and regional scales. In this study, the operational forecasting system combining an advanced eddy-permitting ocean–sea ice ensemble reanalysis ORAS5 and state-of-the-art seasonal model-based forecasting system SEAS5 is used to investigate effects of sea ice dynamics and thermodynamics on seasonal (growth-to-melt) Arctic sea ice predictability in 1993–2020. We demonstrate that thermodynamics (growth/melt) dominates the seasonal evolution of mean sea ice thickness at pan-Arctic and regional scales. The thermodynamics also dominates the seasonal predictability of sea ice thickness at pan-Arctic scale; however, at regional scales, the predictability is dominated by dynamics (advection), although the contribution from ice growth/melt remains perceptible. We show competing influences of sea ice dynamics and thermodynamics on the temporal change of ice thickness predictability from 1993–2006 to 2007–20. Over these decades, there was increasing predictability due to growth/melt, attributed to increased winter ocean heat flux in both Eurasian and Amerasian basins, and decreasing predictability due to advection. Our results demonstrate an increasing impact of advection on seasonal sea ice predictability as the region of interest becomes smaller, implyingmore »
-
Seasonal predictability of the minimum sea ice extent (SIE) in the Laptev Sea is investigated using winter coastal divergence as a predictor. From February to May, the new ice forming in wind-driven coastal polynyas grows to a thickness approximately equal to the climatological thickness loss due to summer thermodynamic processes. Estimating the area of sea ice that is preconditioned to melt enables seasonal predictability of the minimum SIE. Wintertime ice motion is quantified by seeding passive tracers along the coastlines and advecting them with the Lagrangian Ice Tracking System (LITS) forced with sea ice drifts from the Polar Pathfinder dataset for years 1992–2016. LITS-derived landfast ice estimates are comparable to those of the Russian Arctic and Antarctic Research Institute ice charts. Time series of the minimum SIE and coastal divergence show trends of −24.2% and +31.3% per decade, respectively. Statistically significant correlation ( r = −0.63) between anomalies of coastal divergence and the following September SIE occurs for coastal divergence integrated from February to the beginning of May. Using the coastal divergence anomaly to predict the minimum SIE departure from the trend improves the explained variance by 21% compared to hindcasts based on persistence of the linear trend. Coastal divergencemore »
-
Abstract The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice lossmore »