skip to main content


Title: Melt-affected ocean crust and uppermost mantle near Hawaii—clues from ambient-noise phase velocity and seafloor compliance
SUMMARY We present models of crustal and uppermost mantle structure beneath the Hawaiian Swell and surrounding region. The models were derived from ambient-noise intermediate-period Rayleigh-wave phase velocities and from seafloor compliance that were estimated from continuous seismic and pressure recordings collected during the Hawaiian Plume-Lithosphere Undersea Mantle Experiment (PLUME). We jointly inverted these data at the locations of over 50 ocean-bottom instruments, after accounting for variations in local bathymetry and sediment properties. Our results suggest that the crystalline crust is up to 15 km thick beneath the swell and up to 23 km thick closer to the islands. Anomalously thick crust extends towards the older seamounts, downstream of Hawaii. In a second region, anomalies immediately to the south of Hawaii may be associated with the leading edge of the shallow Hawaiian magma conduit. In a third region, thickened crust to the immediate west of Hawaii may be related to Cretaceous seamounts. Low seismic velocities identified in the uppermost mantle to the northeast of Hawaii may be linked to the Molokai fracture zone and may be manifest of complex non-vertical pathways of melt through the upper lithosphere. Velocity anomalies decrease in amplitude towards the surface, suggesting that melt becomes focused into conduits at depths between 20 and 40 km that escape the resolution capabilities of our data set.  more » « less
Award ID(s):
1736516
NSF-PAR ID:
10194562
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
224
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
843 to 857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present models of compressional and shear velocity structure of the oceanic sediments and upper crust surrounding the Hawaiian islands. The models were derived from analysis of seafloor compliance data and measurements of Ps converted phases originating at the sediment‐bedrock interface. These data were estimated from continuous broadband ocean bottom seismometer acceleration and pressure records collected during the Plume‐Lithosphere Undersea Mantle Experiment, an amphibious array of wideband and broadband instruments with an aperture of over 1,000 km. Our images result from a joint inversion of compliance and Ps delay data using a nonlinear inversion scheme whereby deviation from a priori constraints is minimized. In our final model, sediment thickness increases from 50 m at distal sites to over 1.5 km immediately adjacent to the islands. The sedimentary shear velocity profiles exhibit large regional variations. While sedimentary structure accounts for the majority of the compliance signal, we infer variations in shear velocity in the uppermost bedrock on the order of ±5%. We also require relatively high values of Poisson's ratio in the uppermost crust. Lower crustal velocities are generally seen to the north and west of the islands but do not appear well correlated with the Hawaiian Swell bathymetry. A region of strong low velocity anomalies to the northeast of Hawaii may be associated with the Molokai fracture zone.

     
    more » « less
  2. Abstract

    Hundreds of earthquakes were recorded during a nine‐month ocean bottom seismometer deployment surrounding Lō'ihi submarine volcano, Hawai'i. The 12‐station ocean bottom seismometer network widened the aperture of earthquake detection around the Big Island, allowing better constraints on the location of seismicity offshore Hawai'i. Although this deployment occurred during a time of volcanic quiescence for Lō'ihi, it establishes an important basis for background seismicity of the volcano. Offshore seismicity during this study was dominated by events located in the mantle fault zone at depths of 25–40 km. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Pritchard et al., 2007,https://doi.org/10.1111/j.1365‐246X.2006.03169.x; Wolfe et al., 2004,https://doi.org/10.1029/2003GC000618). Tomography was performed using double‐difference seismic tomography and showed shallow velocities to be slower than the regional velocity model (HG50; Klein, 1981,https://pubs.geoscienceworld.org/ssa/bssa/article/71/5/1503/118231/A‐linear‐gradient‐crustal‐model‐for‐south‐Hawaii). A broad, low‐velocity anomaly was observed from 20–40‐km depth, and is suggestive of the central plume conduit that supplies magma to Lō'ihi and the active volcanoes of the Big Island. A localized high‐velocity body is observed 4–6‐km depth beneath Lō'ihi's summit, extending 10 km to the north and south. Following Lō'ihi's active rift zones and crossing the summit, this high‐velocity body is characteristic of intrusive material. Two low‐velocity anomalies are observed below the oceanic crust, interpreted as melt accumulation beneath Lō'ihi and magmatic underplating beneath Hawai'i Island.

     
    more » « less
  3. Abstract

    The Hawaiian‐Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long‐term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean‐Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous withPwave velocities <4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strongPmParrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating.

     
    more » « less
  4. Abstract

    We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (<20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively.

     
    more » « less
  5. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less