skip to main content


Title: Design of a Continuum Mechanism that Matches the Movement of an Eight-bar Linkage
Abstract This paper presents a design methodology for mechanisms consisting of a single continuous structure, continuum mechanisms, that blends the kinematic synthesis of rigid-body mechanisms with topology optimization for compliant mechanisms. Rather than start with a generic structure that is shaped to achieve a required force deflection task for a compliant mechanism, our approach shapes the initial structure based on kinematic synthesis of a rigid body mechanism for the required movement, then the structure is shaped using Finite Element Analysis to achieve the required force deflection relationship. The result of this approach is a continuum mechanism with the same workpiece movement as the rigid link mechanism when actuated. An example illustrates the design process to obtain an eight-bar linkage that guides its workpiece in straight-line rectilinear movement. We show that the resulting continuum mechanism provides the desired rectilinear movement. A 210 mm physical model machined from Nylon-6 is shown to achieve 21.5mm rectilinear movement with no perceived deviation from a straight-line.  more » « less
Award ID(s):
1636017
NSF-PAR ID:
10194731
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
ISSN:
1942-4302
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Movement in compliant mechanisms is achieved, at least in part, via deformable flexible members, rather than using articulating joints. These flexible members are traditionally modeled using Finite Element Models (FEMs). In this article, an alternative strategy for modeling compliant cantilever beams is developed with the objectives of reducing computational expense, and providing accuracy with respect to design optimization solutions. The method involves approximating the response of a flexible beam with an n-link/m-joint Pseudo-Rigid Body Dynamic Model (PRBDM). Traditionally, PRBDM models have shown an approximation of compliant elements using 2 or 3 revolute joints (2R/3R-PRBDM). In this study, a more general nR-PRBDM model is developed. The first n resonant frequencies of the PRBDM are matched to exact or FEM solutions to approximate the response of the compliant system. These models can be used for co-design studies of flexible structural members, and are capable of modeling higher deflection of compliant elements. 
    more » « less
  2. Abstract Based on observations from nature, tails are believed to help animals achieve highly agile motions. Traditional single-link robotic tails serve as a good simplification for both modeling and implementation purposes. However, this approach cannot explain the complicated tail behaviors exhibited in nature where multi-link structures are more commonly observed. Unlike its single-link counterpart, articulated multi-link tails essentially belong to the serial manipulator family which possesses special motion transmission design challenges. To address this challenge, a cable-driven hyper-redundant design becomes the most used approach. Limited by cable strength and elastic components, this approach suffers from low-frequency response, inadequate generated inertial loading, and fragile hardware, which are all critical drawbacks for robotic tails design. To solve these structure-related shortcomings, a multi-link robotic tail made up of rigid links is proposed in this paper. The new structure takes advantage of the traditional hybrid mechanism architecture, but utilizes rigid mechanisms to couple the motions between the ith link and the (i + 1)th link rather than using cable actuation. By doing so, the overall tail becomes a rigid mechanism that achieves quasi-uniform spatial bending for each segment and allows performing highly dynamic motions. The mechanism and detailed design of this new robotic tail are presented. The kinematic model was developed and an optimization process was conducted to reduce the bending non-uniformity for the rigid tail. Based on this special optimization design, the dynamic model of the new mechanism is significantly simplified. A small-scale three-segment prototype was integrated to verify the proposed mechanism's unique mobility. 
    more » « less
  3. Based on observations from nature, tails are believed to help animals achieve highly agile motions. Traditional single-link robotic tails serve as a good simplification for both modeling and implementation purposes. However, this approach cannot explain the complicated tail behaviors exhibited in nature where multi-link structures are more commonly observed. Unlike its single-link counterpart, articulated multi-link tails essentially belong to the serial manipulator family which possesses special transmission design challenges. To address this challenge, a cable driven hyper-redundant design becomes the most used approach. Limited by cable strength and elastic components, this approach suffers from low frequency responses, inadequate generated inertial loading, and fragile hardware, which are all critical drawbacks for robotic tails design. To solve these structure related shortcomings, a multi-link robotic tail made up of rigid links is proposed in this paper. The new structure takes advantage of the traditional hybrid mechanism architecture, but utilizes rigid mechanisms to couple the motions between ith link and i + 1th link rather than using cable actuation. By doing so, the overall tail becomes a rigid mechanism which achieves quasi-uniform spatial bending for each segment and allows performing highly dynamic motions. The mechanism and detailed design for this new tail are synthesized. The kinematic model was developed and an optimization process was conducted to minimize the bending non-uniformity for the rigid tail. 
    more » « less
  4. Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper's performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers. 
    more » « less
  5. null (Ed.)
    Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper’s performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers. 
    more » « less