skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Locally Differentially Private Frequency Estimation with Consistency
Local Differential Privacy (LDP) protects user privacy from the data collector. LDP protocols have been increasingly deployed in the industry. A basic building block is frequency oracle (FO) protocols, which estimate frequencies of values. While several FO protocols have been proposed, the design goal does not lead to optimal results for answering many queries. In this paper, we show that adding post-processing steps to FO protocols by exploiting the knowledge that all individual frequencies should be non-negative and they sum up to one can lead to significantly better accuracy for a wide range of tasks, including frequencies of individual values, frequencies of the most frequent values, and frequencies of subsets of values. We consider 10 different methods that exploit this knowledge differently. We establish theoretical relationships between some of them and conducted extensive experimental evaluations to understand which methods should be used for different query tasks.  more » « less
Award ID(s):
1640374
PAR ID:
10194802
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
NDSS'20: Proceedings of the NDSS Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The notion of Local Differential Privacy (LDP) enables users to respond to sensitive questions while preserving their privacy. The basic LDP frequent oracle (FO) protocol enables an aggregator to estimate the frequency of any value. But when each user has a set of values, one needs an additional padding and sampling step to find the frequent values and estimate their frequencies. In this paper, we formally define such padding and sample based frequency oracles (PSFO). We further identify the privacy amplification property in PSFO. As a result, we propose SVIM, a protocol for finding frequent items in the set-valued LDP setting. Experiments show that under the same privacy guarantee and computational cost, SVIM significantly improves over existing methods. With SVIM to find frequent items, we propose SVSM to effectively find frequent itemsets, which to our knowledge has not been done before in the LDP setting. 
    more » « less
  2. Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user’s privacy, without relying on a trusted third party. LDP protocols (such as Google’s RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending it to an aggregator, who combines values that users contribute to infer statistics about the population. In this paper, we introduce a framework that generalizes several LDP protocols proposed in the literature. Our framework yields a simple and fast aggregation algorithm, whose accuracy can be precisely analyzed. Our in-depth analysis enables us to choose optimal parameters, resulting in two new protocols (i.e., Optimized Unary Encoding and Optimized Local Hashing) that provide better utility than protocols previously proposed. We present precise conditions for when each proposed protocol should be used, and perform experiments that demonstrate the advantage of our proposed protocols. 
    more » « less
  3. Top-k frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-k items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy. In this paper, we present a novel framework HG-LDP to achieve accurate Top-k item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior accuracy-privacy-memory efficiency tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior accuracy-privacy-memory efficiency tradeoff, saving 2300× memory over baseline methods when the item domain size is 41,270. Our code is anonymously open-sourced via the link. 
    more » « less
  4. Local differential privacy (LDP) can be adopted to anonymize richer user data attributes that will be input to sophisticated machine learning (ML) tasks. However, today’s LDP approaches are largely task-agnostic and often lead to severe performance loss – they simply inject noise to all data attributes according to a given privacy budget, regardless of what features are most relevant for the ultimate task. In this paper, we address how to significantly improve the ultimate task performance with multi-dimensional user data by considering a task-aware privacy preservation problem. The key idea is to use an encoder-decoder framework to learn (and anonymize) a task-relevant latent representation of user data. We obtain an analytical near-optimal solution for the linear setting with mean-squared error (MSE) task loss. We also provide an approximate solution through a gradient-based learning algorithm for general nonlinear cases. Extensive experiments demonstrate that our task-aware approach significantly improves ultimate task accuracy compared to standard benchmark LDP approaches with the same level of privacy guarantee. 
    more » « less
  5. null (Ed.)
    Differential privacy protects an individual's privacy by perturbing data on an aggregated level (DP) or individual level (LDP). We report four online human-subject experiments investigating the effects of using different approaches to communicate differential privacy techniques to laypersons in a health app data collection setting. Experiments 1 and 2 investigated participants' data disclosure decisions for low-sensitive and high-sensitive personal information when given different DP or LDP descriptions. Experiments 3 and 4 uncovered reasons behind participants' data sharing decisions, and examined participants' subjective and objective comprehensions of these DP or LDP descriptions. When shown descriptions that explain the implications instead of the definition/processes of DP or LDP technique, participants demonstrated better comprehension and showed more willingness to share information with LDP than with DP, indicating their understanding of LDP's stronger privacy guarantee compared with DP. 
    more » « less