skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The MASSIVE Survey XIV—Stellar Velocity Profiles and Kinematic Misalignments from 200 pc to 20 kpc in Massive Early-type Galaxies
Award ID(s):
1815417 1817100
PAR ID:
10194866
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
891
Issue:
1
ISSN:
1538-4357
Page Range / eLocation ID:
65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. This paper proposes a novel cognitive cooperative transmission scheme by exploiting massive multiple-input multiple-output (MMIMO) and non-orthogonal multiple access (NOMA) radio technologies, which enables a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. The macrocell network is assumed to own the spectrum band and be the primary network (PN), and the small cells act as the secondary networks (SNs). The secondary access points (SAPs) of the small cells can cooperatively relay the traffic for the primary users (PUs) in the macrocell network, while concurrently accessing the PUs’ spectrum to transmit their own data opportunistically through MMIMO and NOMA. Such cooperation creates a “win-win” situation: the throughput of PUs will be significantly increased with the help of SAP relays, and the SAPs are able to use the PU’s spectrum to serve their secondary users (SUs). The interplay of these advanced radio techniques is analyzed in a systematic manner, and a framework is proposed for the joint optimization of cooperative relay selection, NOMA and MMIMO transmit power allocation, and transmission scheduling. Further, to model network-wide cooperation and competition, a two-sided matching algorithm is designed to find the stable partnership between multiple SAPs and PUs. The evaluation results demonstrate that the proposed scheme achieves significant performance gains for both primary and secondary users, compared to the baselines. 
    more » « less
  3. The uplink performance of a mixed analog-to-digital converter (ADC) massive multiple-input multiple-output (MIMO) architecture with a space-constrained array at the base station (BS) is analyzed. We investigate the effect of spatial correlation and mutual coupling on the spectral efficiency (SE) of the system. First, we analyze to what extent adding a small number of high-resolution ADCs can impact the channel estimation accuracy. Then, we derive a closed-form approximation for the SE. Our analysis demonstrates how a space constraint on a uniform linear array (ULA) can affect the design of a massive MIMO system with low-resolution ADCs. It is shown that by equally spacing a small number of high-resolution ADCs over the array, one can dramatically reduce the performance gap between a system with all low-resolution and all high-resolution ADCs. 
    more » « less