skip to main content

Title: Optimization of solar-driven systems for off-grid water nanofiltration and electrification
Abstract The work described is motivated by an inability to extend central infrastructure for power and water to low-population-density areas of the Navajo Nation and elsewhere. It is estimated that 35% of the Navajo population haul water for household use, frequently from unregulated sources of poor initial quality. The proposed household-scale, solar-driven nanofiltration (NF) system designs are economically optimized to satisfy point-of-use water purification objectives. The systems also provide electrical energy for a degree of nighttime household illumination. Results support rational design of multiple-component purification systems consisting of solar panels, a high-pressure pump, NF membranes, battery storage and an electrical control unit subject to constraints on daily water treatment and excess energy generation. The results presented are conditional (based on initial water quality, membrane characteristics and geography) but can be adapted to satisfy alternative treatment objectives in alternate geographic, etc. settings. The unit costs of water and energy from an optimized system that provides 100 gpd (1 gallon is 3.78 L) and 2 kWh/day of excess electrical energy are estimated at $0.16 per 100 gallons of water treated and $0.26 per kWh of nighttime electrical energy delivered. Methods can be used to inform dispersed infrastructure design subject to alternate constraint more » sets in similarly remote areas. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Reviews on Environmental Health
Page Range or eLocation-ID:
211 to 217
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the thermodynamics associated with ion mixing and separation processes is important in order to meet the rising demands for clean energy and water production. Several electrochemical-based technologies such as capacitive deionization and capacitive mixing (CapMix) are capable of achieving desalination and energy production through ion mixing and separation processes, yet experimental investigations suggest energy conversion occurs with low second law (thermodynamic) efficiency. Here, we explore the maximum attainable efficiency for different CapMix cycles to investigate the impact cycle operation has on energy extraction. All investigated cycles are analogous to well documented heat engine cycles. In order to analyzemore »CapMix cycles, we develop a physics-based model of the electric double layer based on the Gouy-Chapman-Stern theory. Evaluating CapMix cycles for energy generation revealed that cycles where ion mixing occurs at constant concentration and switching occurs at constant charge (a cycle analogous to the Stirling engine) attained the highest overall first law (electrical energy) efficiency (39%). This first law efficiency is nearly 300% greater than the first law efficiency of the Otto, Diesel, Brayton, and Atkinson analog cycles where ion mixing occurs while maintaining a constant number of ions. Additionally, the maximum first law efficiency was 89% with a maximum work output of 0.5 kWh per m3 of solution mixed (V = 1.0V) using this same Stirling cycle. Here the salinity gradient was CH = 600 mM and CL = 1 mM (ΔGmix = 0.56 kWh/m3). The effect of voltage was also examined at CH = 600 mM (seawater) and CL = 20 mM (river water). CapMix cycles operated at lower voltage (V < 1.0V), resulted in the Otto cycle yielding the highest first law efficiency of approximately 25% (compared to under 20% for the Stirling cycle); however, this was at the expense of a reduction (50x) in net electrical energy extracted from the same mixing process (0.01 kWh per m3).

    « less
  2. Abstract Engineering innovations—including those in heat and mass transfer—are needed to provide food, water, and power to a growing population (i.e., projected to be 9.8 × 109 by 2050) with limited resources. The interweaving of these resources is embodied in the food, energy, and water (FEW) nexus. This review paper focuses on heat and mass transfer applications which involve at least two aspects of the FEW nexus. Energy and water topics include energy extraction of natural gas hydrates and shale gas; power production (e.g., nuclear and solar); power plant cooling (e.g., wet, dry, and hybrid cooling); water desalination and purification; and buildingmore »energy/water use, including heating, ventilation, air conditioning, and refrigeration technology. Subsequently, this review considers agricultural thermal fluids applications, such as the food and water nexus (e.g., evapotranspiration and evaporation) and the FEW nexus (e.g., greenhouses and food storage, including granaries and freezing/drying). As part of this review, over 100 review papers on thermal and fluid topics relevant to the FEW nexus were tabulated and over 350 research journal articles were discussed. Each section discusses previous research and highlights future opportunities regarding heat and mass transfer research. Several cross-cutting themes emerged from the literature and represent future directions for thermal fluids research: the need for fundamental, thermal fluids knowledge; scaling up from the laboratory to large-scale, integrated systems; increasing economic viability; and increasing efficiency when utilizing resources, especially using waste products.« less
  3. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under acceleratedmore »neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs.« less
  4. The integration of Internet of Things (IoT)-enabled sensors and building energy management systems (BEMS) into smart buildings offers a platform for real-time monitoring of myriad factors that shape indoor air quality. This study explores the application of building energy and smart thermostat data to evaluate indoor ultrafine particle dynamics (UFP, diameter ≤ 100 nm). A new framework is developed whereby a cloud-based BEMS and smart thermostats are integrated with real time UFP sensing and a material balance model to characterize UFP source and loss processes. The data-driven framework was evaluated through a field campaign conducted in an occupied net-zero energymore »building—the Purdue Retrofit Net-zero: Energy, Water, and Waste (ReNEWW) House. Indoor UFP source events were identified through time-resolved electrical kitchen appliance energy use profiles derived from BEMS data. This enabled determination of kitchen appliance-resolved UFP source rates and time-averaged concentrations and size distributions. BEMS and smart thermostat data were used to identify the operational mode and runtime profiles of the air handling unit and energy recovery ventilator, from which UFP source and loss rates were estimated for each mode. The framework demonstrates that equipment-level energy use data can be used to understand how occupant activities and building systems affect indoor air quality.« less
  5. Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni–P–O, Ni–S–O, and Ni–S–P–O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then,more »the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni–S–P–O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell.« less