skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Requirements for the Next-Generation Autonomous Vehicle Ecosystem
Autonomous vehicle (AV) technology is a huge leap forward in capability for mobility. To be effective, the current human based vehicle safety infrastructure will have to be upgraded. A critical leg of this infrastructure is the automobile accident report. Conventional vehicle accident reports have evolved to a point where law enforcement have a reasonably standard approach focused on humans. However, with AVs there are no drivers to interview. Also, given their automation, a flaw found in an AV has the potential to be a systemic risk. In this respect, AVs must be handled more like airplanes in terms of post accident procedures. In this paper, we explore the requirements for AV accident reports and the escalation procedures required to avoid systemic risks. Our methodology is to analyze all the information available (crash reports as well as press accounts) of AV accidents to date with a special focus on the fatal accidents. As a result of this work, a recommendation of an AV crash report template, associated escalation procedure, and an infrastructure for accumulated learning is presented.  more » « less
Award ID(s):
1919855
PAR ID:
10195409
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE 2019 SoutheastCon
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A. Ghate, K. Krishnaiyer (Ed.)
    Deaths due to road traffic accidents are one of the leading causes of death in the United States. Furthermore, the economic impact of road traffic accidents accounts for about 3% of the United States' annual gross domestic product (GDP). In the past decade, extensive research has focused on autonomous vehicles (AVs). This technology is said to help prevent traffic accidents while promoting road traffic safety. This study aims to investigate the safety performance of AVs and identify the significant risk factors associated with the AV collisions. The study considers more than 200 crashes involving AVs and includes vehicle factors, environmental factors, collision type and crash severity. Multinomial logistic regression was conducted with collision type. The results showed no statistically significant risk factors to crash severity. However, movement preceding to collision contributes significantly to collision type. When both vehicles are moving, there's a higher likelihood of an angled collision, 47% to be exact. The other scenario which demonstrates a high probability of an angled collision is when the AV vehicle is not moving while the other is moving. The highest probability for a rear-end collision to occur is when the AV vehicle is not moving while the other is moving. This scenario makes up 55% of the entire rear-end collisions. As for the second-highest proportion, both vehicles moving, it consists of 42%. The research shall help reduce AV involved collisions and increase driving safety. 
    more » « less
  2. Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone. 
    more » « less
  3. null (Ed.)
    In this paper we provide a proof of principle of a new method for addressing the ethics of autonomous vehicles (AVs), the Data-Theories Method, in which vehicle crash data is combined with philosophical ethical theory to provide a guide to action for AV algorithm design. We use this method to model three scenarios in which an AV is exposed to risk on the road, and determine possible actions for the AV. We then examine how different philosophical perspectives on agent partiality, or the degree to which one can act in one’s own self-interest, might address each scenario. This method shows why modelling the ethics of AVs using data is essential. First, AVs may sometimes have options that human drivers do not, and designing AVs to mimic the most ethical human driver would not ensure that they do the right thing. Second, while ethical theories can often disagree about what should be done, disagreement can be reduced and compromises found with a more complete understanding of the AV’s choices and their consequences. Finally, framing problems around thought experiments may elicit preferences that are divergent with what individuals might prefer once they are provided with information about the real risks for a scenario. Our method provides a principled and empirical approach to productively address these problems and offers guidance on AV algorithm design. 
    more » « less
  4. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon. 
    more » « less
  5. Driverless or fully automated vehicles (AVs) are expected to fundamentally change how individuals and households travel and how vehicles use roadway infrastructure. The first goal of this study is to develop a modeling framework of activity-constrained household travel in a future multi-modal network with private AVs, shared-use AVs, transit, and intermodal AV-transit travel options. The second goal is to analyze the potential impacts of AVs—including intermodal AV-transit travel—on (a) household-level travel behavior, (b) household travel costs, (c) demand for transport modes, including transit, and (d) vehicle kilometers traveled or VKT. To meet the first goal, we propose and formulate the Household Activity Pattern Problem with AV-enabled Intermodal Trips (HAPP-AV-IT) that incorporates AV deadheading and intermodal AV-transit trips. The modeling framework extends prior HAPP-based formulations that model household-level travel decisions as vehicle (and person) routing and scheduling problems, similar to the pickup and delivery problem with time-windows. To meet the second goal, we apply the HAPP-AV-IT to two case studies and conduct many computational experiments. We use synthetic activity location data for synthetic households and a fictitious medium-size network with a road network, transit network, residential locations, activity locations, and parking locations. The computational results illustrate (a) the critical role that household AV ownership plays in terms of household travel decisions, modal demand, and VKT, (b) that with AVs, deadheading accounts for 30–40 % of vehicle operating distances, (c) that around 10 % of households in the study region benefit from AV-based intermodal trips, and (d) that those 10 % of households see 5 % reductions in household travel costs and 25 % reductions in VKT on average in the most transit friendly scenario. This last finding suggests that intermodal AV-transit trips may exist in a driverless vehicle future, and therefore, transit agencies and transportation planners should consider how to serve this market. We also propose and test a simple heuristic algorithm that quickly solves HAPP-AV-IT problem instances. 
    more » « less