skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Fair Write Attribution and Allocation for Consolidated Flash Cache
Consolidating multiple workloads on a single flash-based storage device is now a common practice. We identify a new problem related to lifetime management in such settings: how should one partition device resources among consolidated workloads such that their allowed contributions to the device's wear (resulting from their writes including hidden writes due to garbage collection) may be deemed fairly assigned? When flash is used as a cache/buffer, such fairness is important because it impacts what and how much traffic from various workloads may be serviced using flash which in turn affects their performance. We first clarify why the write attribution problem (i.e., which workload contributed how many writes) is non-trivial. We then present a technique for it inspired by the Shapley value, a classical concept from cooperative game theory, and demonstrate that it is accurate, fair, and feasible. We next consider how to treat an overall "write budget" (i.e., total allowable writes during a given time period) for the device as a first-class resource worthy of explicit management. Towards this, we propose a novel write budget allocation technique. Finally, we construct a dynamic lifetime management framework for consolidated devices by putting the above elements together. Our experiments using real-world workloads demonstrate that our write allocation and attribution techniques lead to performance fairness across consolidated workloads.  more » « less
Award ID(s):
1908793
NSF-PAR ID:
10195415
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
Page Range / eLocation ID:
1063 to 1076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although flash cells wear out, a typical SSD has enough cells and sufficiently sophisticated firmware that its lifetime generally exceeds the expected lifetime of its host system. Even under heavy use, SSDs last for years and can be replaced upon failure. On a smartphone, in contrast, the hardware is more limited and we show that, under heavy use, one can easily, and more quickly, wear out smartphone flash storage. Consequently, a simple, unprivileged, malicious application can render a smartphone unbootable ("bricked") in a few weeks with no warning signs to the user. This bleak result becomes more worrisome when considering the fact that smartphone users generally believe it is safe to try out new applications. To combat this problem, we study the I/O behavior of a wide range of Android applications. We find that high-volume write bursts exist, yet none of the applications we checked sustains an average write rate that is high enough to damage the device (under reasonable usage assumptions backed by the literature). We therefore propose a rate-limiting algorithm for write activity that (1) prevents such attacks, (2) accommodates "normal" bursts, and (3) ensures that the smartphone drive lifetime is longer than a preconfigured lower bound (i.e., its warranty). In terms of user experience, our design only requires that, in the worst case of an app that issues continuous, unsustainable, and unusual writes, the user decides whether to shorten the phone's life or rate limit the problematic app. 
    more » « less
  2. Log-based data management systems use storage as if it were an append-only medium, transforming random writes into sequential writes, which delivers significant benefits when logs are persisted on hard disks. Although solid-state drives (SSDs) offer improved random write capabilities, sequential writes continue to be advan- tageous due to locality and space efficiency. However, the inherent properties of flash-based SSDs induce major disadvantages when used with a random write block interface, causing write amplifica- tion, uneven wear, log stacking, and garbage collection overheads. To eliminate these disadvantages, Zoned Namespace (ZNS) SSDs have recently been introduced. They offer increased capacity, re- duced write amplification, and open up data placement and garbage collection to the host through zones, which have sequential-write semantics and must be explicitly reset. We explain how the new ZNS Zone Append primitive, which sup- ports pushing fine-grained data placement onto the device, along with our proposal for “Group Append”, which enables sub-block sized appends, could benefit log-structured data management sys- tems. We explore advantages of ZNS SSDs with Zone Append, Group Append, and computational storage in four log-based data management areas: (i) log-based file systems, (ii) LSM trees such as RocksDB, (iii) database systems, and (iv) event logs/shared logs. Furthermore, we propose research directions for each of these data management systems using ZNS SSDs. 
    more » « less
  3. NAND flash-based Solid State Devices (SSDs) offer the desirable features of high performance, energy efficiency, and fast growing capacity. Thus, the use of SSDs is increasing in distributed storage systems. A key obstacle in this context is that the natural unbalance in distributed I/O workloads can result in wear imbalance across the SSDs in a distributed setting. This, in turn can have significant impact on the reliability, performance, and lifetime of the storage deployment. Extant load balancers for storage systems do not consider SSD wear imbalance when placing data, as the main design goal of such balancers is to extract higher performance. Consequently, data migration is the only common technique for tackling wear imbalance, where existing data is moved from highly loaded servers to the least loaded ones. In this paper, we explore an innovative holistic approach, Chameleon, that employs data redundancy techniques such as replication and erasure-coding, coupled with endurance-aware write offloading, to mitigate wear level imbalance in distributed SSD-based storage. Chameleon aims to balance the wear among different flash servers while meeting desirable objectives of: extending life of flash servers; improving I/O performance; and avoiding bottlenecks. Evaluation with a 50 node SSD cluster shows that Chameleon reduces the wear distribution deviation by 81% while improving the write performance by up to 33%. 
    more » « less
  4. We present the design and implementation of a capacityvariant storage system (CVSS) for flash-based solid-state drives (SSDs). CVSS aims to maintain high performance throughout the lifetime of an SSD by allowing storage capacity to gracefully reduce over time, thus preventing fail-slow symptoms. The CVSS comprises three key components: (1) CV-SSD, an SSD that minimizes write amplification and gracefully reduces its exported capacity with age; (2) CV-FS, a log-structured file system for elastic logical partition; and (3) CV-manager, a user-level program that orchestrates system components based on the state of the storage system. We demonstrate the effectiveness of CVSS with synthetic and real workloads, and show its significant improvements in latency, throughput, and lifetime compared to a fixed-capacity storage system. Specifically, under real workloads, CVSS reduces the latency, improves the throughput, and extends the lifetime by 8–53%, 49–316%, and 268–327%, respectively. 
    more » « less
  5. Flash and non-volatile memory (NVM) devices have only a limited number of write-erase cycles. Consequently, when employed as caches, cache management policies may choose not to cache certain requested items in order to extend device lifespan. In this work, we propose a simple single-parameter utility function to model the trade-off between maximizing hit-rate and minimizing write-erase cycles for such caches, and study the problem of developing an off-line strategy for deciding whether to write a new item to cache, and if so which item already in the cache to replace. Our main result is, , an efficient, network flow based algorithm which finds optimal cache management policy under this new setting. 
    more » « less