Abstract Processing–structure relationships are at the heart of materials science, and predictive tools are essential for modern technological industries insofar as structure dictates intrinsic properties; however, few theoretical models exist for cation‐ordered perovskites. In this work, a combination of data mining and solid‐state synthesis was employed to collect structural data of 1:2 ordered (triple) perovskites. Three compositions within the (Ba1 − xSrx)(Mg1/3Ta2/3)O3system were synthesized using a conventional solid‐state mixed‐oxide method. X‐ray diffraction data showed evidence of long‐range 1:2 B‐site cation ordering for all compositions. Additional data for another 24 1:2 ordered compositions were mined from literature. Correlative models for the deviation in modified tolerance factor (Δt′) were derived for each system, and a general model which is capable of predicting the pseudocubic lattice constants of such perovskites based solely on published ionic‐radii data developed.
more »
« less
Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors
II–IV–V 2 materials, ternary analogs to III–V materials, are emerging for their potential applications in devices such as LEDs and solar cells. Controlling cation ordering in II–IV–V 2 materials offers the potential to tune properties at nearly fixed compositions and lattice parameters. While tuning properties at a fixed lattice constant through ordering has the potential to be a powerful tool used in device fabrication, cation ordering also creates challenges with characterization and quantification of ordering. In this work, we investigate two different methods to quantify cation ordering in ZnGeP 2 thin films: a stretching parameter calculated from lattice constants , and an order parameter determined from the cation site occupancies ( S ). We use high resolution X-ray diffraction (HRXRD) to determine and resonant energy X-ray diffraction (REXD) to extract S . REXD is critical to distinguish between elements with similar Z -number ( e.g. Zn and Ge). We found that samples with a corresponding to the ordered chalcopyrite structure had only partially ordered S values. The optical absorption onset for these films occurred at lower energy than expected for fully ordered ZnGeP 2 , indicating that S is a more accurate descriptor of cation order than the stretching parameter. Since disorder is complex and can occur on many length scales, metrics for quantifying disorder should be chosen that most accurately reflect the physical properties of interest.
more »
« less
- Award ID(s):
- 1729594
- PAR ID:
- 10195508
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 13
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 4350 to 4356
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6.more » « less
-
Quaternary metal‐chalcogenides combining rare‐earth cations with late transition metal cations are attracting growing attention for their optical properties, such as for solar energy conversion or second harmonic generation. Synthetic explorations of theII3‐I2‐IV2‐Ch8family (II = Eu;I = Cu or Ag;IV = Si, Ch = S or Se) have yielded Eu3Ag2Si2S8(1) and Eu3Cu1.08(1)Si2.42(1)Se8(2). Their structures have been characterized by X‐ray diffraction to form in the noncentrosymmetric space groupI3dand to exhibit two distinct types of mixed‐site occupancies, for the Ag(I) cations in1and mixed Cu(I)/Si(IV) cations in2. In both, the cation disorder occurs to achieve charge balancing with the chalcogenide anions. A high yield of1can be achievedwith optical measurements showing indirect and direct band transitions of ≈2.2(1) and ≈2.4(1) eV, respectively. Its second harmonic generation response is found to be relatively strong, approximately 0.9 × AgGaS2, confirming its noncentrosymmetric structure. Band structure calculations reveal the valence and conduction band edges stem predominantly from the filled Ag(I)/Cu(I)‐based states and empty Si(IV)‐based states, respectively, with additional contributions from the chalcogenide anions. Calculation results also show that cation disorder facilitates a reduction in the antibonding interactions between the Ag(I)/Cu(I)d‐based and chalcogenidep‐based states.more » « less
-
Abstract Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced ‘magnetotaxial’ anisotropy as a function of Eu:Tm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m−3for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides.more » « less
-
Epitaxial growth and magnetic properties of kagome metal FeSn/elemental ferromagnet heterostructuresBinary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.more » « less
An official website of the United States government

