skip to main content


Title: Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors
II–IV–V 2 materials, ternary analogs to III–V materials, are emerging for their potential applications in devices such as LEDs and solar cells. Controlling cation ordering in II–IV–V 2 materials offers the potential to tune properties at nearly fixed compositions and lattice parameters. While tuning properties at a fixed lattice constant through ordering has the potential to be a powerful tool used in device fabrication, cation ordering also creates challenges with characterization and quantification of ordering. In this work, we investigate two different methods to quantify cation ordering in ZnGeP 2 thin films: a stretching parameter calculated from lattice constants , and an order parameter determined from the cation site occupancies ( S ). We use high resolution X-ray diffraction (HRXRD) to determine and resonant energy X-ray diffraction (REXD) to extract S . REXD is critical to distinguish between elements with similar Z -number ( e.g. Zn and Ge). We found that samples with a corresponding to the ordered chalcopyrite structure had only partially ordered S values. The optical absorption onset for these films occurred at lower energy than expected for fully ordered ZnGeP 2 , indicating that S is a more accurate descriptor of cation order than the stretching parameter. Since disorder is complex and can occur on many length scales, metrics for quantifying disorder should be chosen that most accurately reflect the physical properties of interest.  more » « less
Award ID(s):
1729594
PAR ID:
10195508
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
8
Issue:
13
ISSN:
2050-7526
Page Range / eLocation ID:
4350 to 4356
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alkali antimonides are well established as high efficiency, low intrinsic emittance photocathodes for accelerators and photon detectors. However, conventionally grown alkali antimonide films are polycrystalline with surface disorder and roughness that can limit achievable beam brightness. Ordering the crystalline structure of alkali antimonides has the potential to deliver higher brightness electron beams by reducing surface disorder and enabling the engineering of material properties at the level of atomic layers. In this report, we demonstrate the growth of ordered Cs3Sb films on single crystal substrates 3C-SiC and graphene-coated 4H-SiC using pulsed laser deposition and conventional thermal evaporation growth techniques. The crystalline structures of the Cs3Sb films were examined using reflection high energy electron diffraction and x-ray diffraction diagnostics, while film thickness and roughness estimates were made using x-ray reflectivity. With these tools, we observed ordered domains in less than 10 nm thick films with quantum efficiencies greater than 1% at 530 nm. Moreover, we identify structural features such as Laue oscillations indicative of highly ordered films. We found that Cs3Sb films grew with flat, fiber-textured surfaces on 3C-SiC and with multiple ordered domains and sub-nanometer surface roughness on graphene-coated 4H-SiC under our growth conditions. We identify the crystallographic orientations of Cs3Sb grown on graphene-coated 4H-SiC substrates and discuss the significance of examining the crystal structure of these films for growing epitaxial heterostructures in future experiments.

     
    more » « less
  2. Binary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.

     
    more » « less
  3. Abstract

    Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6.

     
    more » « less
  4. Abstract

    Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6.

     
    more » « less
  5. Abstract

    The structural and transport properties of vacancy‐ordered monoclinic superconducting titanium oxide (TiO) thin films grown by molecular beam epitaxy are investigated. The evolution of the crystal structure during growth is monitored by in situ synchrotron X‐ray diffraction. Long‐range ordering of Ti and O vacancies in the disordered cubic phase stabilizes the vacancy‐ordered monoclinic TiO phase. The reduced structural disorder arising from vacancy‐ordering is correlated with a superconductor‐metal transition (SMT) in contrast to the superconductor‐insulator transition (SIT) observed in cubic TiO, orthorhombicTi2O3, and the Magneli γ −Ti3O5and γ −Ti4O7phase. Magnetoresistance measurements for the SIT phases indicate superconducting fluctuations persisting in the normal phase. These results confirm the role of disorder related to Ti and O vacancies and structural inhomogeneity in determining the electronic properties of the normal state of titanium oxide‐based superconductors.

     
    more » « less