Abstract Robust principal component analysis (RPCA) is a widely used method for recovering low‐rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low‐rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non‐Gaussian. We thus propose a new method called RPCA for exponential family distributions (), which can perform the desired decomposition into low‐rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient decomposition, under either its natural or canonical parametrization. The effectiveness of is then demonstrated in two applications: the first for steel sheet defect detection and the second for crime activity monitoring in the Atlanta metropolitan area.
more »
« less
Advances in neural information processing systems
This paper extends robust principal component analysis (RPCA) to nonlinear manifolds. Suppose that the observed data matrix is the sum of a sparse component and a component drawn from some low dimensional manifold. Is it possible to separate them by using similar ideas as RPCA? Is there any benefit in treating the manifold as a whole as opposed to treating each local region independently? We answer these two questions affirmatively by proposing and analyzing an optimization framework that separates the sparse component from the manifold under noisy data. Theoretical error bounds are provided when the tangent spaces of the manifold satisfy certain incoherence conditions. We also provide a near optimal choice of the tuning parameters for the proposed optimization formulation with the help of a new curvature estimation method. The efficacy of our method is demonstrated on both synthetic and real datasets.
more »
« less
- Award ID(s):
- 1909523
- PAR ID:
- 10195511
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- Volume:
- 32
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sparse principal component analysis and sparse canonical correlation analysis are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Because nonsmoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve some relaxations of them or are heuristic and lack convergence guarantees. In this paper, we propose a new alternating manifold proximal gradient method to solve these two high-dimensional problems and provide a unified convergence analysis. Numerical experimental results are reported to demonstrate the advantages of our algorithm.more » « less
-
This paper proposes a data-driven method to pinpoint the source of a new emerging dynamical phenomenon in the power grid, referred to “forced oscillations” in the difficult but highly risky case where there is a resonance phenomenon. By exploiting the low-rank and sparse properties of synchrophasor measurements, the localization problem is formulated as a matrix decomposition problem, which can be efficiently solved by the exact augmented Lagrange multiplier algorithm. An online detection scheme is developed based on the problem formulation. The data-driven nature of the proposed method allows for a very efficient implementation. The efficacy of the proposed method is illustrated in a 68-bus power system. The proposed method may possibly be more broadly useful in other situations for identifying the source of forced oscillations in resonant systems. Index Terms—Forced oscillations, resonant systems, phasor measurement unit (PMU), robust principal component analysis (RPCA), Big Data.more » « less
-
Due to their transient nature, clouds represent anomalies relative to the underlying landscape of interest. Hence, the challenge of cloud identification can be considered a specific case in the more general problem of anomaly detection. The confounding effects of transient anomalies are particularly troublesome for spatiotemporal analysis of land surface processes. While spatiotemporal characterization provides a statistical basis to quantify the most significant temporal patterns and their spatial distributions without the need for a priori assumptions about the observed changes, the presence of transient anomalies can obscure the statistical properties of the spatiotemporal processes of interest. The objective of this study is to implement and evaluate a robust approach to distinguish clouds and other transient anomalies from diurnal and annual thermal cycles observed with time-lapse thermography. The approach uses Robust Principal Component Analysis (RPCA) to statistically distinguish low-rank (L) and sparse (S) components of the land surface temperature image time series, followed by a spatiotemporal characterization of its low rank component to quantify the dominant diurnal and annual thermal cycles in the study area. RPCA effectively segregates clouds, sensor anomalies, swath gaps, geospatial displacements and transient thermal anomalies into the sparse component time series. Spatiotemporal characterization of the low-rank component time series clearly resolves a variety of diurnal and annual thermal cycles for different land covers and water bodies while segregating transient anomalies potentially of interest.more » « less
-
We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function considered in the ambient space. This class of problems finds important applications in machine learning and statistics, such as sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose a Riemannian alternating direction method of multipliers (ADMM) to solve this class of problems. Our algorithm adopts easily computable steps in each iteration. The iteration complexity of the proposed algorithm for obtaining an ϵ-stationary point is analyzed under mild assumptions. Existing ADMMs for solving nonconvex problems either do not allow a nonconvex constraint set or do not allow a nonsmooth objective function. Our algorithm is the first ADMM-type algorithm that minimizes a nonsmooth objective over manifold—a particular nonconvex set. Numerical experiments are conducted to demonstrate the advantage of the proposed method. Funding: The research of S. Ma was supported in part by the Office of Naval Research [Grant N00014-24-1-2705]; the National Science Foundation [Grants DMS-2243650, CCF-2308597, CCF-2311275, and ECCS-2326591]; the University of California, Davis Center for Data Science and Artificial Intelligence Research Innovative Data Science Seed Funding Program; and Rice University start-up fund.more » « less