skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of dynamic thermal compensation for parametric instability suppression in Advanced LIGO
Abstract Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO’s design circulating power of 750  kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog1g2= 0.829 ± 0.004.  more » « less
Award ID(s):
2012021 1707835
PAR ID:
10195533
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
37
Issue:
20
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 205021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ionospheric modification experiments have been performed at the High‐Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, using a Very High Frequency (VHF) coherent scatter radar in Homer, Alaska, for experimental diagnostics. The experiments were intended to determine the threshold pump electric field required to initiate thermal parametric instability in theEregion. The pump power level was ramped systematically to determine the threshold, and the experiment was repeated at four closely spaced pump frequencies. This provided threshold estimates at fourEregion altitudes. The theory for thermal parametric instability based on the work of Dysthe et al. (1983,https://doi.org/10.1063/1.863993) has been modified for application in theEregion. The theory considers magneto‐ionic effects on the pump mode, linear mode conversion theory for upper hybrid wave generation, wave heating, and the effects of transport and dissipation based on fluid theory. The theory amounts to an eigenvalue problem where the eigenvalue is the threshold pump electric field for instability. The theory shows how the threshold depends on ionospheric transport coefficients and on the fractional cooling rate for inelastic electron‐neutral collisions. The theoretical predictions for threshold are roughly consistent with experimental values although the latter are probably affected by excess ionospheric absorption. 
    more » « less
  2. Abstract The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares. 
    more » « less
  3. We study the transverse mode instability (TMI) in the limit where a single higher-order mode (HOM) is present. We demonstrate that when the beat length between the fundamental mode and the HOM is small compared to the length scales on which the pump amplitude and the optical mode amplitudes vary, TMI is a three-wave mixing process in which the two optical modes beat with the phase-matched component of the index of refraction that is induced by the thermal grating. This limit is the usual limit in applications, and in this limit TMI is identified as a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a phase-matched model that is based on the three-wave mixing equations can have a large computational advantage over current coupled mode methods that must use longitudinal step sizes that are small compared to the beat length. 
    more » « less
  4. Abstract We investigate a secondary proton beam instability coexisting with the ambient solar wind turbulence at 50R. Three-dimensional hybrid numerical simulations (particle ions and a quasi-neutralizing electron fluid) are carried out with the plasma parameters in the observed range. In the turbulent background, the particle distribution function, in particular the slope of the “bump-on-tail” responsible for the instability, is time-dependent and inhomogeneous. The presence of the turbulence substantially reduces the growth rate and saturation level of the instability. We derive magnetic power spectra from the observational data and perform a statistical analysis to evaluate the average turbulence intensity at 50R. This information is used to link the observed frequency spectrum to the wavenumber spectrum in the simulations. We verify that Taylor’s frozen-in hypothesis is valid for this purpose to a sufficient extent. To reproduce the typical magnetic power spectrum of the instability observed concurrently with the background turbulence, an artificial spacecraft probe is run through the simulation box. The thermal-ion instabilities are often seen as power elevations in the kinetic range of scales above an extrapolation of the turbulence spectrum from larger scales. We show that the elevated power in the simulations is much higher than the background level. Therefore, the turbulence at the average intensity does not obscure the secondary proton beam instability, as opposed to the solar wind at 1 au, in which the ambient turbulence typically obscures thermal-ion instabilities. 
    more » « less
  5. Herein, a finite element simulation framework for phase‐change memory devices that simultaneously solves for current continuity, electrothermal heating, and crystallization–amorphization dynamics using electrothermal models and dynamic material parameters that are functions of electric field and temperature is described. In this latest model, an electric field‐ and temperature‐dependent electrical conductivity model of stable amorphous Ge2Sb2Te5(GST) obtained from experiments performed on GST line cells to study Read, Reset, and Set operations of mushroom cells is incorporated. The effects of current polarity, heater height, Reset pulse rise and fall times, access device configuration, and ambient temperature are analyzed. The simulation results predict a 2x change in Reset current requirements with different current polarity due to thermoelectric effects. Heater height plays a significant role in thermal losses; ≈16% decrease in Reset current for 4x increase in the heater height is obtained. Increase in the ambient temperature results in a linear decrease in the Reset power required to achieve the same Reset/Set resistance contrast. 
    more » « less