skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Internal Stress in the Early-Stage Nucleation of Amorphous Calcium Carbonate Gels
Although calcium carbonate (CaCO3) precipitation plays an important role in nature, its mechanism remains only partially understood. Further understanding the atomic driving force behind the CaCO3 precipitation could be key to facilitate the capture, immobilization, and utilization of CO2 by mineralization. Here, based on molecular dynamics simulations, we investigate the mechanism of the early-stage nucleation of an amorphous calcium carbonate gel. We show that the gelation reaction manifests itself by the formation of some calcium carbonate clusters that grow over time. Interestingly, we demonstrate that the gelation reaction is driven by the existence of some competing local molecular stresses within the Ca and C precursors, which progressively get released upon gelation. This internal molecular stress is found to originate from the significantly different local coordination environments exhibited by Ca and C atoms. These results highlight the key role played by the local stress acting within the atomic network in governing gelation reactions.  more » « less
Award ID(s):
1922167
PAR ID:
10195540
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
10
Issue:
12
ISSN:
2076-3417
Page Range / eLocation ID:
4359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The precipitation of calcium carbonate (CaCO3) is a key mechanism in carbon capture applications relying on mineralization. In that regard, Ca-rich cementitious binders offer a unique opportunity to act as a large-scale carbon sink by immobilizing CO2 as calcium carbonate by mineralization. However, the atomistic mechanism of calcium carbonate formation is still not fully understood. Here, we study the atomic scale nucleation mechanism of an early stage amorphous CaCO3 gel based on reactive molecular dynamics (MD) simulations. We observe that reactive MD offers a notably improved description of this reaction as compared to classical MD, which allows us to reveal new insights into the structure of amorphous calcium carbonate gels and formation kinetics thereof. 
    more » « less
  2. It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations. 
    more » « less
  3. Calcium–alumino–silicate–hydrate (CaO–Al2O3–SiO2–H2O, or C–A–S–H) gel, which is the binding phase of cement-based materials, greatly influences concrete mechanical properties and durability. However, the atomic-scale kinetics of the aluminosilicate network condensation remains puzzling. Here, based on reactive molecular dynamics simulations of C–A–S–H systems formation with varying Al/Ca molar ratios, we study the kinetic mechanism of the hydrated aluminosilicate gels upon precipitation. We show that the condensation activation energy decreases with the Al/Ca molar ratio, which suggests that the concentration of the Al polytopes has a great effect on controlling the kinetics of the gelation reaction. Significantly, we demonstrate that 5-fold Al atoms are mainly forming at high Al/Ca molar ratios since there are insufficient hydrogen cations or extra calcium cations to compensate the negatively charged Al polytopes at high Al/Ca molar ratios during accelerated aging. 
    more » « less
  4. Teagle, Damon A (Ed.)
    The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels. 
    more » « less
  5. Calcium silicates are abundant, but sparingly soluble, feedstocks of interest for making low-carbon alternative cements. Under hydrothermal and alkaline conditions, they can form crystalline calcium silicate hydrate (CCSH) products, which are abundant in Roman concrete, or they can form carbonates when CO2 is present. To understand when co-precipitation of CCSH and carbonate phases is possible, we studied the hydrothermal carbonation of a model calcium silicate, pseudowollastonite (-CaSiO3), at 150ºC and high pH as a function of CO2 source (CO2(g) or Na2CO3) and different concentrations of sodium, alumina, and silica. Our experiments produced a range of CCSH phases including tobermorite – 13Å, rhodesite, and pectolite, as early as one day after the start of our experiments. About 10.7% hydrated product was observed after 7 days of curing in 2 M NaOH solution. We also observed the formation of CaCO3 as both aragonite and calcite when carbon was introduced to our experimental system. The carbon source impacted the ratio of CaCO3 to CCSH phases in the reaction products. Availability of Na2CO3 produced a balance between CaCO3 and CCSH phases whereas CO2(g) produced more CaCO3 at about 36.4% by mass at the highest. Higher concentrations of Na+ increased precipitation of both CaCO3 and/or CCSH phases. The presence of excess silica, in the form of dissolved borosilicate glass from our reaction vessels under alkaline reaction conditions, also enhanced the formation of CCSH phases formed in some experiments. Supplemental Al2O3, a common constituent in many silicate feedstocks, also enhanced CCSH formation, likely by forming aluminum substituted phases under the conditions tested here. These chemical insights can be enabling in designing formulation and curing guidelines for novel cementitious materials. 
    more » « less