skip to main content


Title: Isotopic fractionation accompanying CO2 hydroxylation and carbonate precipitation from high pH waters at The Cedars, California, USA
The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels.  more » « less
Award ID(s):
1749183
PAR ID:
10280379
Author(s) / Creator(s):
Editor(s):
Teagle, Damon A
Date Published:
Journal Name:
Geochimica
Volume:
301
ISSN:
0096-3089
Page Range / eLocation ID:
91-115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Hot and cold spring travertine deposits record integrated histories reflecting changing hydrologic conditions, informing our understanding of the driving forces behind factors impacting local hydrology. We present results from a geologic and geochemical investigation of Cottonwood Travertine, located in Dixie Valley, NV, where it is unclear if the paleospring system that deposited the travertine was driven by deeply sourced hydrothermal fluids, or high fluid flow driven by wetter paleoclimate conditions. The temperature of the spring water that precipitated the Cottonwood Travertine has implications for the relative importance of hydrothermal versus climatic processes influencing the formation and cessation of this enigmatic deposit. We identified four groups of samples based on geologic setting, sample textures, and stable and clumped isotopic analysis: 1) calcite cemented upper gravels, 2) a mound area at the upper bench of the deposit, 3) samples from the flanks and from vuggy veins and fault zone cements from the base of the deposit, and 4) fibrous sub-travertine veins. The calcite-cemented gravels yielded δ18OC values as low as -18.4‰ (VPDB) and apparent TΔ47 of 52°C. The top mound of the deposit returned calcite δ18OC values between -12.8‰ and -11.7‰ (VPDB) and clumped isotope temperatures (TD47) of 24 – 32°C. Higher d13C and d18Oc values at the mound site are interpreted to reflect off gassing of CO2 and disequilibrium conditions. δ18OC and TD47 values from the slopes and base of the deposit are between -15.9‰ and -14.5‰ (VPDB) and around 20°C, respectively. Structurally, texturally, and isotopically (δ18OC = -29.4‰ (VPDB); TΔ47 = 93°C), the fibrous sub-travertine veins are more consistent with the local Jurassic host rock and probably do not reflect recent hot spring conditions. Our analysis suggests that, despite the impressive volume, Cottonwood Travertine formed from springs that were not particularly hot, and the deposit instead reflects vigorous warm spring activity in a wetter climactic regime rather than fluid flow from an extinct higher temperature hydrothermal system. 
    more » « less
  2. The US Southwest is projected to get warmer and drier due to increasing atmospheric CO2, which threatens the region’s ability to support its current ecosystem. However, there is high uncertainty in this projection as precipitation and evapotranspiration remain poorly constrained. We use paleoclimate proxy data from the Miocene to gain insights into Southwest climate during periods of higher atmospheric CO2. Today, the southwest US is characterized by two wet seasons: in winter, the mid-latitude westerlies deliver Pacific-derived moisture, whereas summer moisture is predominantly delivered by the North American Monsoon. We present a new high-resolution sedimentary archive of carbon and oxygen stable isotope (d18O, d13Ccarbonate, and d13Corganic) data to constrain the hydroclimate and ecosystem productivity response to higher atmospheric CO2, derived from authigenic carbonates within the Miocene-aged Santa Fe Group of the Rio Grande Rift from the Española and Albuquerque basins. We find substantial spatial and temporal variability in d18O, likely reflecting variability in the strength of the two circulation systems that deliver moisture to the southwest US. Overall, reconstructed precipitation d18O is lower than today throughout much of the Miocene, suggesting potentially a greater influence of the wintertime westerlies in the moisture budget of the southwest US during the Miocene. Sedimentary organic d13C is < -20‰ throughout the Miocene, indicative of little C4 plant influence during this time. Sedimentary carbonate d13C is generally always less than -5‰, and is positively correlated to carbonate d18O. Such coupling may reflect the influence of evaporation on these samples or a strong link between moisture delivery and primary productivity in this arid climate. 
    more » « less
  3. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  4. The precipitation of calcium carbonate (CaCO3) is a key mechanism in carbon capture applications relying on mineralization. In that regard, Ca-rich cementitious binders offer a unique opportunity to act as a large-scale carbon sink by immobilizing CO2 as calcium carbonate by mineralization. However, the atomistic mechanism of calcium carbonate formation is still not fully understood. Here, we study the atomic scale nucleation mechanism of an early stage amorphous CaCO3 gel based on reactive molecular dynamics (MD) simulations. We observe that reactive MD offers a notably improved description of this reaction as compared to classical MD, which allows us to reveal new insights into the structure of amorphous calcium carbonate gels and formation kinetics thereof.

     
    more » « less
  5. Calcium silicates are abundant, but sparingly soluble, feedstocks of interest for making low-carbon alternative cements. Under hydrothermal and alkaline conditions, they can form crystalline calcium silicate hydrate (CCSH) products, which are abundant in Roman concrete, or they can form carbonates when CO2 is present. To understand when co-precipitation of CCSH and carbonate phases is possible, we studied the hydrothermal carbonation of a model calcium silicate, pseudowollastonite (-CaSiO3), at 150ºC and high pH as a function of CO2 source (CO2(g) or Na2CO3) and different concentrations of sodium, alumina, and silica. Our experiments produced a range of CCSH phases including tobermorite – 13Å, rhodesite, and pectolite, as early as one day after the start of our experiments. About 10.7% hydrated product was observed after 7 days of curing in 2 M NaOH solution. We also observed the formation of CaCO3 as both aragonite and calcite when carbon was introduced to our experimental system. The carbon source impacted the ratio of CaCO3 to CCSH phases in the reaction products. Availability of Na2CO3 produced a balance between CaCO3 and CCSH phases whereas CO2(g) produced more CaCO3 at about 36.4% by mass at the highest. Higher concentrations of Na+ increased precipitation of both CaCO3 and/or CCSH phases. The presence of excess silica, in the form of dissolved borosilicate glass from our reaction vessels under alkaline reaction conditions, also enhanced the formation of CCSH phases formed in some experiments. Supplemental Al2O3, a common constituent in many silicate feedstocks, also enhanced CCSH formation, likely by forming aluminum substituted phases under the conditions tested here. These chemical insights can be enabling in designing formulation and curing guidelines for novel cementitious materials. 
    more » « less