skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel Polymorphic Phase of BaCu 2 As 2 : Impact of Flux for New Phase Formation in Crystal Growth
Award ID(s):
1921581 1922076 1921847 1921798
PAR ID:
10195547
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
20
Issue:
9
ISSN:
1528-7483
Page Range / eLocation ID:
5922 to 5930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. Among group VI transition metal dichalcogenides, MoTe 2 is predicted to have the smallest energy offset between semiconducting 2H and semimetallic 1T′ states. This makes it an attractive phase change material for both electronic and optoelectronic applications. Here, we report fast, nondestructive, and full phase change in Al 2 O 3 -encapsulated 2H-MoTe 2 thin films to 1T′-MoTe 2 using rapid thermal annealing at 900 °C. Phase change was confirmed using Raman spectroscopy after a short annealing duration of 10 s in both vacuum and nitrogen ambient. No thickness dependence of the transition temperatures was observed for flake thickness ranging from 1.5 to 8 nm. These results represent a major step forward in understanding the structural phase transition properties of MoTe 2 thin films using external heating and underline the importance of surface encapsulation for avoiding thin film degradation. 
    more » « less
  4. Phase change materials (PCMs) are important building blocks in solid-state memory and photonic devices. Solution-based processing promises large-area, cost-effective, conformal coating of optical PCMs (O-PCMs) for photonic applications. In this work, a solution processing route was developed for Ge2Sb2Se4Te1(GSST), a target PCM of interest due to its large optical contrast, broadband transparency, and improved glass-forming capability. An alkahest solvent mixture of ethanedithiol and ethylenediamine was used as a solvent system to fabricate solution-derived GSST thin films and films from these solutions were prepared and characterized using SEM, XRD, and Raman spectroscopy. 
    more » « less