skip to main content


Title: Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in Yarrowia lipolytica
Award ID(s):
1706545
NSF-PAR ID:
10195662
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS Synthetic Biology
Volume:
9
Issue:
4
ISSN:
2161-5063
Page Range / eLocation ID:
967 to 971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ma, Li-Jun (Ed.)
    Abstract By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms. 
    more » « less
  2. Abstract Background

    Co‐occurrence of two genetic diseases is challenging for accurate diagnosis and genetic counseling. The recent availability of whole exome sequencing (WES) has dramatically improved the molecular diagnosis of rare genetic diseases in particular in consanguineous populations.

    Methods

    We report here on a consanguineous family from Southern Tunisia including three members affected with congenital ichthyosis. The index case had a hearing loss (HL) and ichthyosis and was primarily suspected as suffering from keratitis‐ichthyosis‐deafness (KID) syndrome.WESwas performed for the index case, and all members of the nuclear family were sequenced (Sanger method).

    Results

    TheWESapproach allowed the identification of two strong candidate variants in two different genes; a missense mutation c.1334T>G (p.Leu445Trp) in exon 11 ofSLC26A4gene, associated with isolatedHLand a novel missense mutation c.728G>T (p.Arg243Leu) in exon 8 ofCYP4F22gene likely responsible for ichthyosis. These two mutations were predicted to be pathogenic by three pathogenicity prediction softwares (Scale‐Invariant Feature Transform [SIFT], Polymorphism Phenotyping [PolyPhen], Mutation Taster) to underlie theHLand ichthyosis, respectively.

    Conclusions

    The present study raises awareness about the importance of familial history for accurate diagnosis of syndromic genetic diseases and differential diagnosis with co‐occurrence of two distinct clinical entities. In addition, in countries with limited resources,WESsequencing for a single individual provides a cost effective tool for molecular diagnosis confirmation and genetic counseling.

     
    more » « less