skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Robust Energy and Emissions Conscious Speed Control Framework for Connected Vehicles with Privacy Considerations
While perturbation schemes for vehicle-to-vehicle (V2V) communications can address data privacy concerns, they can significantly compromise the performance of the speed controllers of connected automated vehicles (CAVs) if such controllers rely on the preview information available through V2V in car-following scenarios. This paper presents a robust predictive speed controller for a CAV when preview information is provided through a privacy-guaranteed V2V communication network. This is the first such controller that considers energy and emissions concurrently. The impact of privacy assurance in the communication data is studied, while inter-vehicular distance constraint is guaranteed to be satisfied through a robust design of the predictive controller using a robust control invariant set. The robust optimal speed controller is shown to reduce fuel consumption and emissions successfully while satisfying the constraints even in the presence of perturbations in the V2V communication. Results suggest a need for an integrated design procedure to achieve the best performance under a given level of privacy guarantee and emissions requirements.  more » « less
Award ID(s):
1646019
PAR ID:
10195807
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
0743-1619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speed planning in a vehicle-following scenario can reduce vehicle fuel consumption even under limited traffic preview and in moderate penetration of connected autonomous vehicles (CAVs), but could also lead to colder exhaust temperature, and consequently, less efficient aftertreatment conversion. To investigate this potential trade-off, this paper presents a model predictive controller (MPC) to optimally plan in an energy-conscious way the optimal speed trajectory for a diesel car following a hypothetical lead vehicle that drives through the velocity trace of a federal test procedure. Using this energy-conscious optimal speed plan we investigate different horizons for three objective functions, including minimum acceleration, minimum fuel consumption and minimum power. Then, MPC results are compared to the trajectories obtained by dynamic programming with full knowledge of the drive cycle. As expected, longer previews lead to smoother velocity trajectories that reduce the fuel consumption by 11% when power is the objective function, if the preview is accurate. When the minimum fuel is set as the objective in the MPC, the controller coordinates to operate the engine at more efficient conditions, which increases the fuel saving to 25%. However, the extra fuel saving is shown to be achieved at the expense of high vehicle NOx emissions, since the engine operates at low speeds and high loads, where the output NOx emissions are high, when the aftertreatment catalyst is not hot enough. Finally, it is shown that the minimum power formulation leads to a better trade-off, where fuel economy can be increased without a large penalty on NOx emissions. 
    more » « less
  2. Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately. 
    more » « less
  3. Cities around the world are increasingly promoting electric vehicles (EV) to reduce and ultimately eliminate greenhouse gas emissions. A huge number of EVs will put unprecedented stress on the power grid. To efficiently serve the increased charging load, these EVs need to be charged in a coordinated fashion. One promising coordination strategy is vehicle-to-vehicle (V2V) charging coordination, enabling EVs to sell their surplus energy in an ad-hoc, peer to peer manner. This paper introduces an Information Centric Networking (ICN)-based protocol to support ad-hoc V2V charging coordination (V2V-CC). Our evaluations demonstrate that V2V-CC can provide added flexibility, fault tolerance, and reduced communication latency than a conventional centralized cloud based approach. We show that V2V-CC can achieve a 93% reduction in protocol completion time compared to a conventional approach. We also show that V2V-CC also works well under extreme packet loss, making it ideal for V2V charging coordination. 
    more » « less
  4. null (Ed.)
    Connected Autonomous Vehicular (CAV) platoon refers to a group of vehicles that coordinate their movements and operate as a single unit. The vehicle at the head acts as the leader of the platoon and determines the course of the vehicles following it. The follower vehicles utilize Vehicle-to-Vehicle (V2V) communication and automated driving support systems to automatically maintain a small fixed distance between each other. Reliance on V2V communication exposes platoons to several possible malicious attacks which can compromise the safety, stability, and efficiency of the vehicles. We present a novel distributed resiliency architecture, RePLACe for CAV platoon vehicles to defend against adversaries corrupting V2V communication reporting preceding vehicle position. RePLACe is unique in that it can provide real-time defense against a spectrum of communication attacks. RePLACe provides systematic augmentation of a platoon controller architecture with real-time detection and mitigation functionality using machine learning. Unlike computationally intensive cryptographic solutions RePLACe accounts for the limited computation capabilities provided by automotive platforms as well as the real-time requirements of the application. Furthermore, unlike control-theoretic approaches, the same framework works against the broad spectrum of attacks. We also develop a systematic approach for evaluation of resiliency of CAV applications against V2V attacks. We perform extensive experimental evaluation to demonstrate the efficacy of RePLACe. 
    more » « less
  5. Real-time control of a fleet of Connected and Automated Vehicles (CAV) for Cooperative Adaptive Cruise Control (CACC) is a challenging problem concerning time delays (from sensing, communication, and computation) and actuator lag. This paper proposes a real-time predictive distributed CACC control framework that addresses time delays and actuator lag issues in the real-time networked control systems. We first formulate a Kalman Filter-based real-time current driving state prediction model to provide more accurate initial conditions for the distributed CACC controller by compensating time delays using sensing data from multi-rate onboard sensors (e.g., Radar, GPS, wheel speed, and accelerometer), and status-sharing and intent-sharing data in BSM via V2V communication. We solve the prediction model using a sequential Kalman Filter update process for multi-rate sensing data to improve computational efficiency. We propose a real-time distributed MPC-based CACC controller with actuator lag and intent-sharing information for each CAV with the delay-compensated predicted current driving states as initial conditions. We implement the real-time predictive distributed CACC control algorithms and conduct numerical analyses to demonstrate the benefits of intent-sharing-based distributed computing, delay compensation, and actuator lag consideration on string stability under various traffic dynamics. 
    more » « less