Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent. 
                        more » 
                        « less   
                    
                            
                            Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests
                        
                    
    
            Aim Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree symbiosis implicated in most major ecosystem functions. However, resilience of ECMF to future climates is uncertain. We forecast these changes over the extent of North American Pinaceae forests. Location About 68 sites from North American Pinaceae forests ranging from Florida to Ontario in the east and southern California to Alaska in the west. Taxon Ectomycorrhizal fungi (Asco‐ and Basidiomycetes). Methods We characterized ECMF communities at each site using molecular methods and modelled climatic drivers of diversity and community composition with general additive, generalized dissimilarity models and Threshold Indicator Taxa ANalysis (TITAN). Next, we projected our models across the extent of North American Pinaceae forests and forecast ECMF responses to climate changes in these forests over the next 50 years. Results We predict median declines in ECMF species richness as high as 26% in Pinaceae forests throughout a climate zone comprising more than 3.5 million square kilometres of North America (an area twice that of Alaska state). Mitigation of greenhouse gas emissions can reduce these declines, but not prevent them. The existence of multiple diversity optima along climate gradients suggest regionally divergent trajectories for North American ECMF, which is corroborated by corresponding ECMF community thresholds identified in TITAN models. Warming of forests along the boreal–temperate ecotone results in projected ECMF species loss and declines in the relative abundance of long‐distance foraging ECMF species, whereas warming of eastern temperate forests has the opposite effect. Main Conclusions Our results reveal potentially unavoidable ECMF species‐losses over the next 50 years, which is likely to have profound (if yet unclear) effects on ECMF‐associated biogeochemical cycles. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10195837
- Date Published:
- Journal Name:
- Journal of biogeography
- Volume:
- 47
- ISSN:
- 1365-2699
- Page Range / eLocation ID:
- 772-782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract AimEfforts to predict the responses of soil fungal communities to climate change are hindered by limited information on how fungal niches are distributed across environmental hyperspace. We predict the climate sensitivity of North American soil fungal assemblage composition by modelling the ecological niches of several thousand fungal species. LocationOne hundred and thirteen sites in the United States and Canada spanning all biomes except tropical rain forest. Major Taxa StudiedFungi. Time Period2011–2018. MethodsWe combine internal transcribed spacer (ITS) sequences from two continental‐scale sampling networks in North America and cluster them into operational taxonomic units (OTUs) at 97% similarity. Using climate and soil data, we fit ecological niche models (ENMs) based on logistic ridge regression for all OTUs present in at least 10 sites (n = 8597). To describe the compositional turnover of soil fungal assemblages over climatic gradients, we introduce a novel niche‐based metric of climate sensitivity, the Sørensen climate sensitivity index. Finally, we map climate sensitivity across North America. ResultsENMs have a mean out‐of‐sample predictive accuracy of 73.8%, with temperature variables being strong predictors of fungal distributions. Soil fungal climate niches clump together across environmental space, which suggests common physiological limits and predicts abrupt changes in composition with respect to changes in climate. Soil fungi in North American climates are more likely to be limited by cold and dry conditions than by warm and wet conditions, and ectomycorrhizal fungi generally tolerate colder temperatures than saprotrophic fungi. Sørensen climate sensitivity exhibits a multimodal distribution across environmental space, with a peak in climates corresponding to boreal forests. Main ConclusionsThe boreal forest occupies an especially precarious region of environmental space for the composition of soil fungal assemblages in North America, as even small degrees of warming could trigger large compositional changes characterized mainly by an influx of warm‐adapted species.more » « less
- 
            Druzhinina, Irina S. (Ed.)ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.more » « less
- 
            Aim: Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of host plants. Documenting the biogeography of microbiomes can detect the potential for a changing environment to disrupt host-microbe interactions, particularly in cases where microbes, such as root-associated Ascomycota, buffer hosts against abiotic stressors. We evaluated whether root-associated fungi had poleward declines in diversity as occur for many animals and plants, tested whether microbial communities shifted near host plant range edges, and determined the relative importance of latitude, climate, edaphic factors, and host plant traits as predictors of fungal community structure. Location: North American plains grasslands Taxon: Foundation North American grass species ⎯ Andropogon gerardii, Bouteloua eriopoda, B. gracilis, B. dactyloides, and Schizachyrium scoparium and their root-associated fungi Methods: At each of 24 sites representing three replicate latitudinal gradients spanning 17° latitude, we collected roots from 12 individual plants per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next-generation sequencing of the fungal ITS2 region, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. Results: Root-associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of these environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged among individual plants of each grass species. Main conclusions: Environmental predictors of root-associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non-mycorrhizal, root-associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate.more » « less
- 
            ABSTRACT Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field‐derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus,Burkholderia, in a time‐dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced ‘Gadgil effect’ by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial‐EcMF interactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    