skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Convergence of the Iterative Linear Exponential Quadratic Gaussian Algorithm to Stationary Points
A classical method for risk-sensitive nonlinear control is the iterative linear exponential quadratic Gaussian algorithm. We present its convergence analysis from a first-order optimization viewpoint. We identify the objective that the algorithm actually minimizes and we show how the addition of a proximal term guarantees convergence to a stationary point.  more » « less
Award ID(s):
1839371
PAR ID:
10195843
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 American Control Conference
Page Range / eLocation ID:
132 to 137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the linear convergence of the subspace constrained mean shift (SCMS) algorithm, a well-known algorithm for identifying a density ridge defined by a kernel density estimator. By arguing that the SCMS algorithm is a special variant of a subspace constrained gradient ascent (SCGA) algorithm with an adaptive step size, we derive the linear convergence of such SCGA algorithm. While the existing research focuses mainly on density ridges in the Euclidean space, we generalize density ridges and the SCMS algorithm to directional data. In particular, we establish the stability theorem of density ridges with directional data and prove the linear convergence of our proposed directional SCMS algorithm. 
    more » « less
  2. null (Ed.)
    Motivated by the fact that the gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs), here we derive an ODE representation of the accelerated triple momentum (TM) algorithm. For unconstrained optimization problems with strongly convex cost, the TM algorithm has a proven faster convergence rate than the Nesterov's accelerated gradient (NAG) method but with the same computational complexity. We show that similar to the NAG method, in order to accurately capture the characteristics of the TM method, we need to use a high-resolution modeling to obtain the ODE representation of the TM algorithm. We propose a Lyapunov analysis to investigate the stability and convergence behavior of the proposed high-resolution ODE representation of the TM algorithm. We compare the rate of the ODE representation of the TM method with that of the NAG method to confirm its faster convergence. Our study also leads to a tighter bound on the worst rate of convergence for the ODE model of the NAG method. In this paper, we also discuss the use of the integral quadratic constraint (IQC) method to establish an estimate on the rate of convergence of the TM algorithm. A numerical example verifies our results. 
    more » « less
  3. We show that the weak convergence of the Douglas--Rachford algorithm for finding a zero of the sum of two maximally monotone operators cannot be improved to strong convergence. Likewise, we show that strong convergence can fail for the method of partial inverses. 
    more » « less
  4. In this paper, we develop a distributed consensus algorithm for agents whose states evolve on a manifold. This algorithm is complementary to traditional consensus, predominantly developed for systems with dynamics on vector spaces. We provide theoretical convergence guarantees for the proposed manifold consensus provided that agents are initialized within a geodesically convex (g-convex) set. This required condition on initialization is not restrictive as g-convex sets may be comparatively “large” for relevant Riemannian manifolds. Our approach to manifold consensus builds upon the notion of Riemannian Center of Mass (RCM) and the intrinsic structure of the manifold to avoid projections in the ambient space. We first show that on a g-convex ball, all states coincide if and only if each agent’s state is the RCM of its neighbors’ states. This observation facilitates our convergence guarantee to the consensus submanifold. Finally, we provide simulation results that exemplify the linear convergence rate of the proposed algorithm and illustrates its statistical properties over randomly generated problem instances. 
    more » « less
  5. Sagastizábal, C (Ed.)
    The convergence theory for the gradient sampling algorithm is extended to directionally Lipschitz functions. Although directionally Lipschitz functions are not necessarily locally Lipschitz, they are almost everywhere differentiable and well approximated by gradients and so are a natural candidate for the application of the gradient sampling algorithm. The main obstacle to this extension is the potential unboundedness or emptiness of the Clarke subdifferential at points of interest. The convergence analysis we present provides one path to addressing these issues. In particular, we recover the usual convergence theory when the function is locally Lipschitz. Moreover, if the algorithm does not drive a certain measure of criticality to zero, then the iterates must converge to a point at which either the Clarke subdifferential is empty or the direction of steepest descent is degenerate in the sense that it does lie in the interior of the domain of the regular subderivative. 
    more » « less