skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Socialization and Retention of Low-Income College Students: The Impact of a Wrap-Around Intervention
The Strategic Undergraduate STEM Talent Acceleration INitiative (SUSTAIN) provided a coherent ecosystem of academic, social, and career support services designed for a diverse cohort of high-achieving, low-income STEM students during their first year of undergraduate study. Findings are discussed in terms of the efficacy of the program interventions to enhance students’ socialization and retention within the STEM community. Results indicate that participants perceived the interventions to have helped them adjust to college life and develop skills in understanding science and the scientific process. Which in turn, participants reported, helped them to succeed in their STEM courses and visualize themselves as part of the larger STEM community. The participants rated STEM faculty mentoring, research experience and community building as more helpful than other interventions. Our findings will aid researchers to better understand how SUSTAIN interventions influence students’ socialization into the STEM community and provide valuable insight to guide policymakers in shaping future programs that are successful in retaining diverse students in STEM fields.  more » « less
Award ID(s):
1644148
PAR ID:
10195916
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Higher Education
Volume:
8
Issue:
6
ISSN:
1927-6044
Page Range / eLocation ID:
249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the experiences of successful diverse science, technology, engineering, and math (STEM) faculty can facilitate the development of programming that counteracts barriers and weaknesses from multiple angles. The challenges that students and professionals report can be broadly identified as either identity-based or institutional. The lack of diversity in STEM fields in academia can result in narrow viewpoints, limited student diversity, and missed opportunities to address today’s societal challenges. It is clear that we must consider programming that has positively impacted successful STEM faculty in academia in order to create effective programming to recruit and retain future diverse STEM faculty. Our phenomenological study sought to add to the literature related to the role that socialization plays in preparing individuals for success in faculty roles by conducting in-depth interviews with early-career STEM faculty members in under-represented groups. The phenomena under investigation were experiences leading to early-career STEM faculty members’ successful career pathways. Seven early-career STEM faculty from multiple institutions described unique paths to their current faculty position with some commonalities, including participation in undergraduate or postdoc research and having some industry experience. The suggestions, advice, and guidance offered by the participants fell into categories that, while mirrored in the literature, serve as useful markers for administrators developing programming. We organized our findings using the conceptual framework of socialization and the associated competencies for our context. As we strive to encourage and build diverse representation in populations of STEM academicians, these collective findings are invaluable. Findings confirm that programming directly impacts the success of early-career STEM faculty, and it is the success of these individuals that will enable diversity and inclusion to expand in STEM. Programs, interventions, and additional efforts for graduate students can also benefit from close examination of these experiences. 
    more » « less
  2. The purpose of this research full paper is to examine the development of undergraduate students’ research identity during a summer undergraduate research experience. Identity development through socialization experiences is crucial for students to explore future career paths, especially in careers that require research-focused graduate degrees. However, literature is limited on how effective socialization occurs for research and future research-related careers. This paper follows 10 undergraduate engineering and physics students participating in an engineering-focused Research Experiences for Undergraduates (REU) program at an R1 institution to explore this gap in knowledge. As part of a longitudinal multi-method study, participants completed a pre- and post-experience survey, and participated in three interviews over the course of the summer. Survey data were analyzed using descriptive statistics and a Wilcoxon signed-rank test. Interviews were analyzed through the lens of academic self-concept theory for common themes of socialization and identity development in research through the course of the program. Findings indicate that undergraduate students’ research self-concepts are heavily influenced by research experiences and comparisons to their peers. The students’ increase in research self-concept as well as their experiences and interactions within the program allowed them to see research careers as attainable and increased their interest in pursuing graduate degrees after the program. Survey data showed a statistical increase in research self-efficacy and research identity at the end of the program, reinforcing the idea that students’ experiences in the REU helped them grow as researchers and engineers. This research increases our understanding of students’ research identity development and provides potential ways to implement research self-concept and identity development to similar undergraduate research experiences. 
    more » « less
  3. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.1 mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.2 mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.3 report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  4. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.[1] mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.[2] mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.[3] report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  5. This paper describes the structure, project initiatives, and early results of the NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University (WCU). SPIRIT is a scholarship program focused on building an interdisciplinary engineering learning community involved in extensive peer and faculty mentoring, vertically-integrated Project Based Learning (PBL), and undergraduate research experiences. The program has provided twenty-six scholarships and academic resources to a diverse group of engineering and engineering technology students. Results from several project initiatives have been promising. Recruitment efforts have resulted in a demographically diverse group of participants whose retention rates within the program have held at 82%. A vibrant learning community has organically developed where participants are provided both academic and non-academic support across several majors and grade classes. Since May 2014, SPIRIT undergraduate research projects have resulted in forty-five presentations at seven different undergraduate and professional conferences. Twenty-seven PBL and five integrated open-ended design challenges have been completed, involving several corporate sponsors and encompassing a wide-range of engineering topics. Results from a ninety-question participant survey revealed several perceived program strengths and areas of possible improvement. Overall, the participants agreed or strongly agreed that the program had been a positive experience (4.0/4.0) and had helped them to prepare for a career in engineering (3.8/4.0). Undergraduate research activities conducted through the program have helped the participants to understand the steps involved in research processes (3.8/4.0), to appreciate the need for a combination of analysis and hands-on skills (4.0/4.0), and to become more resilient toward academic challenges and obstacles (3.8/4.0). The program’s learning community helped participants build relationships with other students outside of their major (3.1/4.0) as compared to normal course communities. Several participants believed that they were more comfortable with seeking advice from upper class students within the program (3.7/4.0) as compared to upper class students outside the program (2.7/4.0). Vertically-integrated PBL activities helped participants in understanding project management techniques (3.8/4.0), teaming techniques (3.7/4.0), and to assume a leadership role on projects (3.6/4.0). Indicated areas of program improvement included the desire and need for a system of peer-review for the students’ undergraduate research papers; a perceived hindrance to benefit from “journaling” about their program experiences (3.6/4.0); and a need for continued strengthening of activities associated with graduate school application processes as well as preparations for job interviews and applications. This paper presents details of the program initiatives, a compilation of survey results with necessary discussion, and areas of possible improvement going forward. 
    more » « less